A056939 Array read by antidiagonals: number of antichains (or order ideals) in the poset 3*m*n or plane partitions with rows <= m, columns <= n and entries <= 3.
1, 1, 1, 1, 4, 1, 1, 10, 10, 1, 1, 20, 50, 20, 1, 1, 35, 175, 175, 35, 1, 1, 56, 490, 980, 490, 56, 1, 1, 84, 1176, 4116, 4116, 1176, 84, 1, 1, 120, 2520, 14112, 24696, 14112, 2520, 120, 1, 1, 165, 4950, 41580, 116424, 116424, 41580, 4950, 165, 1
Offset: 0
Examples
The initial rows of the array are: 1 1 1 1 1 1 ... 1 4 10 20 35 56 ... 1 10 50 175 490 1176 ... 1 20 175 980 4116 14112 ... 1 35 490 4116 24696 116424 ... 1 56 1176 14112 116424 731808 ... ... Considered as a triangle, the initial rows are: [1], [1, 1], [1, 4, 1], [1, 10, 10, 1], [1, 20, 50, 20, 1], [1, 35, 175, 175, 35, 1], [1, 56, 490, 980, 490, 56, 1], [1, 84, 1176, 4116, 4116, 1176, 84, 1], [1, 120, 2520, 14112, 24696, 14112, 2520, 120, 1], [1, 165, 4950, 41580, 116424, 116424, 41580, 4950, 165, 1], [1, 220, 9075, 108900, 457380, 731808, 457380, 108900, 9075, 220, 1] ...
References
- Berman and Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), p. 103-124
- R. P. Stanley, Theory and application of plane partitions. II. Studies in Appl. Math. 50 (1971), p. 259-279. Thm. 18.1
Links
- Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.
- J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124. [Annotated scanned copy]
- Johann Cigler, Pascal triangle, Hoggatt matrices, and analogous constructions, arXiv:2103.01652 [math.CO], 2021.
- Johann Cigler, Some observations about Hoggatt triangles, Universität Wien (Austria, 2021).
- Johann Cigler, Some observations about Hankel determinants of the columns of Pascal triangle and related topics, arXiv:2202.07298 [math.CO], 2022.
- Stefan Felsner, Eric Fusy, Marc Noy, and David Orden, Bijections for Baxter families and related objects, J. Combin. Theory Ser. A, 118(3):993-1020, 2011.
- V. E. Hoggatt, Jr., Letter to N. J. A. Sloane, Apr 1977
- P. A. MacMahon, Combinatory analysis, section 495, 1916.
Crossrefs
Programs
-
Maple
# To get initial terms of the array - N. J. A. Sloane, Apr 20 2021 bb := (k,l) -> binomial(k+l,k)*binomial(k+l+1,k)*binomial(k+l+2,k)*2/((k+1)^2*(k+2)); for k from 0 to 8 do lprint([seq(bb(k,l),l=0..8)]); od:
-
Mathematica
t[n_, m_] = 2*Binomial[n, m]*Binomial[n + 1, m + 1]* Binomial[n + 2, m + 2]/((n - m + 1)^2*(n - m + 2)); Flatten[Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}]] (* Roger L. Bagula, Jan 28 2009 *)
-
PARI
\\ cf. A359363 C=binomial; T(n,k)=if(n==0&&k==0,1,(C(n+1,k-1)*C(n+1,k)*C(n+1,k+1))/(C(n+1,1)*C(n+1,2))); for(n=1,10,for(k=1,n,print1(T(n,k),", "));print()); \\ Joerg Arndt, Jan 04 2024
Formula
Product_{k=0..2} binomial(n+m+k, m+k)/binomial(n+k, k) gives the array as a square.
T(n,m) = 2*binomial(n, m)*binomial(n+1, m+1)*binomial(n+2, m+2)/((n-m+1)^2*(n-m+2)). - Roger L. Bagula, Jan 28 2009
From Peter Bala, Oct 13 2011: (Start)
T(n,k) = 2/((n+1)*(n+2)*(n+3))*C(n+1,k)*C(n+2,k+2)*C(n+3,k+1);
T(n,k) = 2/((n+1)*(n+2)*(n+3))*C(n+1,k+1)*C(n+2,k)*C(n+3,k+2). Cf. A197208.
T(n-1,k-1)*T(n,k+1)*T(n+1,k) = T(n-1,k)*T(n,k-1)*T(n+1,k+1).
Define a(r,n) = n!*(n+1)!*...*(n+r)!. The triangle whose (n,k)-th entry is a(r,0)*a(r,n)/(a(r,k)*a(r,n-k)) is A007318 (r = 0), A001263 (r = 1), A056939 (r = 2), A056940 (r = 3) and A056941 (r = 4). (End)
The column generating functions of the square array (starting at column 1) are 1/(1 - x)^4, (1 + 3*x + x^2)/(1 - x)^7, (1 + 10*x + 20*x^2 + 10*x^3 + x^4)/(1 - x)^10, ..., where the numerator polynomials are the row polynomials of A087647. See Barry p. 31. - Peter Bala, Oct 18 2023
Comments