cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056940 Number of antichains (or order ideals) in the poset 4*m*n or plane partitions with at most m rows and n columns and entries <= 4.

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 15, 15, 1, 1, 35, 105, 35, 1, 1, 70, 490, 490, 70, 1, 1, 126, 1764, 4116, 1764, 126, 1, 1, 210, 5292, 24696, 24696, 5292, 210, 1, 1, 330, 13860, 116424, 232848, 116424, 13860, 330, 1, 1, 495, 32670, 457380, 1646568, 1646568, 457380, 32670, 495, 1
Offset: 0

Views

Author

Keywords

Comments

Triangle of generalized binomial coefficients (n,k)A342889.%20-%20_N.%20J.%20A.%20Sloane">4; cf. A342889. - _N. J. A. Sloane, Apr 03 2021
Determinants of 4 X 4 subarrays of Pascal's triangle A007318 (a matrix entry being set to 0 when not present). - Gerald McGarvey, Feb 24 2005
Row sums are: {1, 2, 7, 32, 177, 1122, 7898, 60398, 494078, 4274228, 38763298, ...}. - Roger L. Bagula, Mar 08 2010
Also determinants of 4x4 arrays whose entries come from a single row: T(n,k) = det [C(n,k), C(n,k-1), C(n,k-2), C(n,k-3); C(n,k+1), C(n,k), C(n,k-1), C(n,k-2); C(n,k+2), C(n,k+1), C(n,k), C(n,k-1); C(n,k+3), C(n,k+2), C(n,k+1), C(n,k)]. - Peter Bala, May 10 2012

Examples

			Triangle begins as:
  1.
  1,   1.
  1,   5,     1.
  1,  15,    15,      1.
  1,  35,   105,     35,      1.
  1,  70,   490,    490,     70,      1.
  1, 126,  1764,   4116,   1764,    126,     1.
  1, 210,  5292,  24696,  24696,   5292,   210,   1.
  1, 330, 13860, 116424, 232848, 116424, 13860, 330, 1. - _Roger L. Bagula_, Mar 08 2010
		

Crossrefs

Antidiagonals sum to A005362 (Hoggatt sequence).
Cf. A056939 (q=2), A056940 (q=3), A056941 (q=4), A142465 (q=5), A142467 (q=6), A142468 (q=7), A174109 (q=8).
Triangles of generalized binomial coefficients (n,k)_m (or generalized Pascal triangles) for m = 1,...,12: A007318 (Pascal), A001263, A056939, A056940, A056941, A142465, A142467, A142468, A174109, A342889, A342890, A342891.

Programs

  • Mathematica
    c[n_, q_] = Product[i + j, {j, 0, q}, {i, 1, n}];
    T[n_, m_, q_] = c[n, q]/(c[m, q]*c[n - m, q]);
    Table[T[n, k, 3], {n, 0, 10}, {k, 0, n}]//Flatten (* Roger L. Bagula, Mar 08 2010 *)(* modified by G. C. Greubel, Apr 13 2019 *)
  • PARI
    A056940(n,m)=prod(k=0,3,binomial(n+m+k,m+k)/binomial(n+k,k)) \\ M. F. Hasler, Sep 26 2018

Formula

Product_{k=0..3} C(n+m+k, m+k)/C(n+k, k) gives the array as a square.
T(n,m,q) = c(n,q)/(c(m,q)*c(n-m,q)) with c(n,q) = Product_{i=1..n, j=0..q} (i + j), q = 3. - Roger L. Bagula, Mar 08 2010
From Peter Bala, Oct 13 2011: (Start)
T(n-1,k-1)*T(n,k+1)*T(n+1,k) = T(n-1,k)*T(n,k-1)*T(n+1,k+1).
Define f(r,n) = n!*(n+1)!*...*(n+r)!. The triangle whose (n,k)-th entry is f(r,0)*f(r,n)/(f(r,k)*f(r,n-k)) is A007318 (r = 0), A001263 (r = 1), A056939 (r = 2), A056940 (r = 3) and A056941 (r = 4). (End)

Extensions

Edited by M. F. Hasler, Sep 26 2018