A056953 Denominators of continued fraction for alternating factorial.
1, 1, 2, 3, 7, 13, 34, 73, 209, 501, 1546, 4051, 13327, 37633, 130922, 394353, 1441729, 4596553, 17572114, 58941091, 234662231, 824073141, 3405357682, 12470162233, 53334454417, 202976401213, 896324308634, 3535017524403, 16083557845279, 65573803186921
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..400
- Francesca Aicardi, Diego Arcis, and Jesús Juyumaya, Ramified inverse and planar monoids, arXiv:2210.17461 [math.RT], 2022.
- Index entries for sequences related to Laguerre polynomials
Programs
-
Magma
[(&+[Factorial(k)*Binomial(Floor(n/2),k)*Binomial(Floor((n+1)/2),k): k in [0..Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, May 16 2018
-
Maple
a:= proc(n) option remember; `if`(n<4, [1, 1, 2, 3][n+1], ((4*n-2)*a(n-2) +2*a(n-3) -(n-2)*(n-3)*a(n-4)) /4) end: seq(a(n), n=0..30); # Alois P. Heinz, Feb 14 2013
-
Mathematica
Table[Sum[k!*Binomial[Floor[n/2], k]*Binomial[Floor[(n+1)/2], k] , {k,0,Floor[n/2]}], {n,0,30}] (* G. C. Greubel, May 16 2018 *)
-
PARI
a(n)=sum(k=0,n\2,k!*binomial(n\2,k)*binomial((n+1)\2,k)) \\ Paul D. Hanna, Oct 31 2006
Formula
a(0)=1; a(1)=1; a(n) = a(n-1) + n*a(n-2)/2.
a(n) = Sum_{k=0..[n/2]} k!*C([n/2],k)*C([(n+1)/2],k). - Paul D. Hanna, Oct 31 2006
a(n) ~ n^(n/2 + 1/4) / (2^(n/2 + 3/4) * exp(n/2 - sqrt(2*n) + 1/2)) * (1 + (25 + 6*(-1)^n)/(24*sqrt(2*n)) + (397 + 156*(-1)^n)/(2304*n)). - Vaclav Kotesovec, Feb 22 2019
Comments