cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056973 Number of blocks of {0,0} in the binary expansion of n.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 3, 2, 1, 1, 1, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 4, 3, 2, 2, 2, 1, 1, 1, 2, 1, 0, 0, 1, 0, 0, 0, 3, 2, 1, 1, 1, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 5, 4, 3, 3, 3, 2, 2, 2, 3, 2, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 4, 3, 2, 2, 2, 1, 1
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    a056973 = f 0 where
       f y x = if x == 0 then y else f (y + 0 ^ (mod x 4)) $ div x 2
    -- Reinhard Zumkeller, Mar 31 2015
    
  • Maple
    f:= proc(n) option remember;
         if n mod 4 = 0 then 1 + procname(n/2)
         else procname(floor(n/2))
         fi
    end proc:
    f(1):= 0:
    map(f, [$1..200]); # Robert Israel, Sep 02 2015
  • Mathematica
    f[n_] := Count[Partition[IntegerDigits[n, 2], 2, 1], {0, 0}]; Table[f@ n, {n, 0, 102}] (* Michael De Vlieger, Sep 01 2015, after Robert G. Wilson v at A014081 *)
    SequenceCount[#,{0,0},Overlaps->True]&/@(IntegerDigits[#,2]&/@Range[0,120]) (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 24 2018 *)
  • PARI
    a(n) = { my(x = bitor(n, n>>1));
             if (x == 0, 0, 1 + logint(x, 2) - hammingweight(x)) }
    vector(102, i, a(i))  \\ Gheorghe Coserea, Sep 01 2015

Formula

a(2n) = a(n) + [n is even], a(2n+1) = a(n).
G.f.: 1/(1-x) * Sum_{k>=0} t^4/((1+t)*(1+t^2)) where t=x^(2^k). - Ralf Stephan, Sep 10 2003
a(n) = A023416(n) - A033264(n). - Ralf Stephan, Sep 10 2003
Sum_{n>=1} a(n)/(n*(n+1)) = 2 - 3*log(2)/2 - Pi/4 (Allouche and Shallit, 1990). - Amiram Eldar, Jun 01 2021