A056978 Number of blocks of {1, 0, 0} in binary expansion of n.
0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 2, 1, 1
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Digit Block
Programs
-
Haskell
import Data.List (tails, isPrefixOf) a056978 = sum . map (fromEnum . ([0,0,1] `isPrefixOf`)) . tails . a030308_row -- Reinhard Zumkeller, Jun 17 2012
-
Mathematica
a[1] = a[2] = 0; a[n_] := a[n] = If[OddQ[n], a[(n-1)/2], a[n/2] + Boole[Mod[n/2, 4] == 2]]; Table[a[n], {n, 1, 102}] (* Jean-François Alcover, Oct 22 2012, after Ralf Stephan *) Table[SequenceCount[IntegerDigits[n,2],{1,0,0}],{n,120}] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 01 2016 *)
-
PARI
a(n) = hammingweight(bitnegimply(n>>2, bitor(n>>1, n))); \\ Gheorghe Coserea, Sep 08 2015
Formula
a(2n) = a(n) + [n congruent to 2 mod 4], a(2n+1) = a(n). - Ralf Stephan, Aug 22 2003
Comments