A056980 Number of blocks of {1, 1, 0} in binary expansion of n.
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 2
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Digit Block.
Programs
-
Haskell
import Data.List (tails, isPrefixOf) a056980 = sum . map (fromEnum . ([0,1,1] `isPrefixOf`)) . tails . a030308_row -- Reinhard Zumkeller, Jun 17 2012
-
Mathematica
a[1] = a[2] = 0; a[n_] := a[n] = If[OddQ[n], a[(n - 1)/2], a[n/2] + Boole[Mod[n/2, 4] == 3]]; Table[a[n], {n, 1, 102}] (* Jean-François Alcover, Oct 22 2012, after Ralf Stephan *)
-
PARI
a(n) = hammingweight(bitnegimply(bitand(n>>1, n>>2), n)); vector(102, i, a(i)) \\ Gheorghe Coserea, Sep 07 2015
Formula
a(2n) = a(n) + [n congruent to 3 mod 4], a(2n+1) = a(n). - Ralf Stephan, Aug 22 2003
a(n) = A213629(n,6) for n > 5. - Reinhard Zumkeller, Jun 17 2012