A033264 Number of blocks of {1,0} in the binary expansion of n.
0, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 1, 1, 1, 0, 1, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 0, 1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 3, 2, 2, 2, 2, 1, 1, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 0, 1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 3, 2, 2, 2, 2, 1, 2, 2, 3, 2, 3, 3, 3, 2, 2, 2, 3, 2, 2, 2, 2, 1, 1, 1, 2, 1, 2, 2, 2
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Jean-Paul Allouche and Jeffrey Shallit, Sums of digits and the Hurwitz zeta function, in: K. Nagasaka and E. Fouvry (eds.), Analytic Number Theory, Lecture Notes in Mathematics, Vol. 1434, Springer, Berlin, Heidelberg, 1990, pp. 19-30.
- Ralf Stephan, Some divide-and-conquer sequences with (relatively) simple ordinary generating functions, 2004.
- Ralf Stephan, Table of generating functions.
- Eric Weisstein's World of Mathematics, Digit Block.
- Index entries for sequences related to binary expansion of n
Crossrefs
Programs
-
Haskell
a033264 = f 0 . a030308_row where f c [] = c f c (0 : 1 : bs) = f (c + 1) bs f c (_ : bs) = f c bs -- Reinhard Zumkeller, Feb 20 2014, Jun 17 2012
-
Maple
f:= proc(n) option remember; local k; k:= n mod 4; if k = 2 then procname((n-2)/4) + 1 elif k = 3 then procname((n-3)/4) else procname((n-k)/2) fi end proc: f(1):= 0: f(0):= q: seq(f(i),i=1..100); # Robert Israel, Aug 31 2015
-
Mathematica
Table[Count[Partition[IntegerDigits[n, 2], 2, 1], {1, 0}], {n, 102}] (* Michael De Vlieger, Aug 31 2015, after Robert G. Wilson v at A014081 *) Table[SequenceCount[IntegerDigits[n,2],{1,0}],{n,110}] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 26 2017 *)
-
PARI
a(n) = { hammingweight(bitand(n>>1, bitneg(n))) }; \\ Gheorghe Coserea, Aug 30 2015
-
Python
def A033264(n): return ((n>>1)&~n).bit_count() # Chai Wah Wu, Jun 25 2025
Formula
G.f.: 1/(1-x) * Sum_(k>=0, t^2/(1+t)/(1+t^2), t=x^2^k). - Ralf Stephan, Sep 10 2003
a(n) = A069010(n) - (n mod 2). - Ralf Stephan, Sep 10 2003
a(4n) = a(4n+1) = a(2n), a(4n+2) = a(n)+1, a(4n+3) = a(n). - Ralf Stephan, Aug 20 2003
a(n) = A087116(n) for n > 0, since strings of 0's alternate with strings of 1's, which end in (1,0). - Jonathan Sondow, Jan 17 2016
Sum_{n>=1} a(n)/(n*(n+1)) = Pi/4 - log(2)/2 (A196521) (Allouche and Shallit, 1990). - Amiram Eldar, Jun 01 2021
Comments