A057009 Number of conjugacy classes of subgroups of index 3 in free group of rank n.
1, 7, 41, 235, 1361, 7987, 47321, 281995, 1685921, 10096867, 60524201, 362972155, 2177309681, 13062280147, 78368930681, 470199300715, 2821152888641, 16926788453827, 101560343826761, 609360901747675, 3656161925798801, 21936961098633907, 131621735219132441
Offset: 1
Keywords
References
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.13(c), pp. 76, 112.
Links
- J. H. Kwak and J. Lee, Enumeration of connected graph coverings, J. Graph Th., 23 (1996), 105-109.
- J. H. Kwak and J. Lee, Enumeration of graph coverings and surface branched coverings, Lecture Note Series 1 (2001), Com^2MaC-KOSEF, Korea. See chapter 3.
- V. A. Liskovets, Reductive enumeration under mutually orthogonal group actions, Acta Applic. Math., 52 (1998), 91-120.
- Index entries for linear recurrences with constant coefficients, signature (11,-36,36).
Programs
-
Magma
[6^(n-1)+3^(n-1)-2^(n-1): n in [1..30]] /* or */ I:=[1,7,41]; [n le 3 select I[n] else 11*Self(n-1)-36*Self(n-2)+36*Self(n-3): n in [1..30]]; // Vincenzo Librandi, May 12 2015
-
Mathematica
Table[6^(n-1)+3^(n-1)-2^(n-1),{n,25}] (* or *) LinearRecurrence[ {11,-36,36},{1,7,41},25] (* Harvey P. Dale, Nov 24 2011 *) CoefficientList[Series[(1 - 4 x)/((1 - 2 x) (1 - 3 x) (1 - 6 x)), {x, 0, 33}], x] (* Vincenzo Librandi, May 12 2015 *)
-
PARI
a(n)=if(n<0,0,6^(n-1)+3^(n-1)-2^(n-1))
Formula
G.f.: x(1-4x)/((1-2x)(1-3x)(1-6x)). a(n) = 6^(n-1)+3^(n-1)-2^(n-1).
E.g.f.: e^(6*x)+e^(3*x)-e^(2*x). [Mohammad K. Azarian, Jan 16 2009]
a(1)=1, a(2)=7, a(3)=41, a(n) = 11*a(n-1)-36*a(n-2)+36*a(n-3). [Harvey P. Dale, Nov 24 2011]
Extensions
More terms from Francisco Salinas (franciscodesalinas(AT)hotmail.com), Dec 25 2001
Comments