cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A090310 a(n) = 21*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 21.

Original entry on oeis.org

2, 21, 443, 9324, 196247, 4130511, 86936978, 1829807049, 38512885007, 810600392196, 17061121121123, 359094143935779, 7558038143772482, 159077895163157901, 3348193836570088403, 70471148463135014364
Offset: 0

Views

Author

Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 25 2004

Keywords

Comments

Lim_{n-> infinity} a(n)/a(n+1) = 0.0475115... = 2/(21+sqrt(445)) = (sqrt(445)-21)/2.
Lim_{n-> infinity} a(n+1)/a(n) = 21.0475115... = (21+sqrt(445))/2 = 2/(sqrt(445)-21).
a(2) = 443 divides a(14) = 3348193836570088403. Does this relate to the sequence being the (21,1)-weighted Fibonacci sequence with seed (2,21) and both 14 and 21 being multiples of 7? Primes in this sequence include: a(0) = 2, a(2) = 443, a(4) = 196247 Semiprimes in this sequence include: a(8) = 38512885007 = 97967 * 393121, a(14) = 3348193836570088403 = 443 * 7557999631083721. - Jonathan Vos Post, Feb 10 2005

Examples

			a(4) = 21*a(3) + a(2) = 21*9324 + 443 = ((21+sqrt(445))/2)^4 + ((21-sqrt(445))/2)^4 = 196246.9999949043 + 0.0000050956 = 196247.
		

Crossrefs

Lucas polynomials Lucas(n,m): A000032 (m=1), A002203 (m=2), A006497 (m=3), A014448 (m=4), A087130 (m=5), A085447 (m=6), A086902 (m=7), A086594 (m=8), A087798 (m=9), A086927 (m=10), A001946 (m=11), A086928 (m=12), A088316 (m=13), A090300 (m=14), A090301 (m=15), A090305 (m=16), A090306 (m=17), A090307 (m=18), A090308 (m=19), A090309 (m=20), this sequence (m=21), A090313 (m=22), A090314 (m=23), A090316 (m=24), A330767 (m=25).

Programs

  • GAP
    m:=21;; a:=[2,m];; for n in [3..20] do a[n]:=m*a[n-1]+a[n-2]; od; a; # G. C. Greubel, Dec 30 2019
  • Magma
    m:=21; I:=[2,m]; [n le 2 select I[n] else m*Self(n-1) +Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 30 2019
    
  • Maple
    seq(simplify(2*(-I)^n*ChebyshevT(n, 21*I/2)), n = 0..20); # G. C. Greubel, Dec 30 2019
  • Mathematica
    LinearRecurrence[{21,1},{2,21},40] (* or *) CoefficientList[ Series[ (2-21x)/(1-21x-x^2),{x,0,40}],x]  (* Harvey P. Dale, Apr 24 2011 *)
    LucasL[Range[20]-1,21] (* G. C. Greubel, Dec 30 2019 *)
  • PARI
    vector(21, n, 2*(-I)^(n-1)*polchebyshev(n-1, 1, 21*I/2) ) \\ G. C. Greubel, Dec 30 2019
    
  • Sage
    [2*(-I)^n*chebyshev_T(n, 21*I/2) for n in (0..20)] # G. C. Greubel, Dec 30 2019
    

Formula

a(n) = 21*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 21.
a(n) = ((21+sqrt(445))/2)^n + ((21-sqrt(445))/2)^n.
(a(n))^2 = a(2n) - 2 if n=1, 3, 5... .
(a(n))^2 = a(2n) + 2 if n=2, 4, 6... .
G.f.: (2-21*x)/(1-21*x-x^2). - Philippe Deléham, Nov 02 2008
a(n) = Lucas(n, 21) = 2*(-i)^n * ChebyshevT(n, 21*i/2). - G. C. Greubel, Dec 30 2019

Extensions

More terms from Ray Chandler, Feb 14 2004

A249991 Start with the natural numbers, reverse the order in each pair, skip one number, reverse the order in each triple, skip one number, and so on.

Original entry on oeis.org

2, 3, 5, 10, 12, 13, 21, 26, 28, 39, 41, 46, 54, 65, 67, 82, 84, 85, 109, 114, 122, 137, 139, 160, 178, 179, 181, 222, 230, 235, 269, 274, 276, 313, 331, 336, 370, 381, 383, 424, 426, 437, 471, 476, 536, 541, 549, 554, 618, 629, 647, 704, 706, 707, 761, 818
Offset: 1

Views

Author

Alex Ratushnyak, Nov 27 2014

Keywords

Comments

Start with the natural numbers. Reverse the order of numbers in each pair. Skip one number. In the remainder (that is, "1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11,...") reverse the order in each triple. Skip one number. In the remainder (it starts with "4, 1, 8, 5, 6, 9, 10, 7") reverse the order in each tetrad. Skip one number. And so on.

Crossrefs

Partial sums of A057031.

Programs

  • Python
    TOP = 100000
    a = list(range(TOP))
    for step in range(2,TOP):
      numBlocks = (len(a)-1) // step
      if numBlocks==0:  break
      a = a[:(1+numBlocks*step)]
      for pos in range(1,len(a),step):
        a[pos:pos+step] = a[pos+step-1:pos-1:-1]
      print(a[1], end=', ')
      a[1:] = a[2:]
Showing 1-2 of 2 results.