A057086 Scaled Chebyshev U-polynomials evaluated at sqrt(10)/2.
1, 10, 90, 800, 7100, 63000, 559000, 4960000, 44010000, 390500000, 3464900000, 30744000000, 272791000000, 2420470000000, 21476790000000, 190563200000000, 1690864100000000, 15003009000000000, 133121449000000000, 1181184400000000000, 10480629510000000000
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- A. F. Horadam, Special properties of the sequence W_n(a,b; p,q), Fib. Quart., 5.5 (1967), 424-434. Case n->n+1, a=0,b=1; p=10, q=-10.
- Wolfdieter Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38 (2000) 408-419. Eqs.(38) and (45),lhs, m=10.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (10,-10).
Crossrefs
Programs
-
Magma
[(10)^n*Evaluate(DicksonSecond(n, 1/10), 1): n in [0..30]]; // G. C. Greubel, May 02 2022
-
Mathematica
Join[{a=1,b=10},Table[c=10*b-10*a;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Jan 20 2011 *)
-
PARI
Vec(1/(1-10*x+10*x^2) + O(x^30)) \\ Colin Barker, Jun 14 2015
-
Sage
[lucas_number1(n,10,10) for n in range(1, 20)] # Zerinvary Lajos, Apr 26 2009
Formula
a(n) = 10*(a(n-1) - a(n-2)), a(-1)=0, a(0)=1.
a(n) = S(n, sqrt(10))*(sqrt(10))^n with S(n, x) := U(n, x/2), Chebyshev's polynomials of the 2nd kind, A049310.
G.f.: 1/(1-10*x+10*x^2).
a(n) = Sum_{k=0..n} A109466(n,k)*10^k. - Philippe Deléham, Oct 28 2008
Comments