cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A057087 Scaled Chebyshev U-polynomials evaluated at i. Generalized Fibonacci sequence.

Original entry on oeis.org

1, 4, 20, 96, 464, 2240, 10816, 52224, 252160, 1217536, 5878784, 28385280, 137056256, 661766144, 3195289600, 15428222976, 74494050304, 359689093120, 1736732573696, 8385686667264, 40489676963840, 195501454524416
Offset: 0

Views

Author

Wolfdieter Lang, Aug 11 2000

Keywords

Comments

a(n) gives the length of the word obtained after n steps with the substitution rule 0->1111, 1->11110, starting from 0. The number of 1's and 0's of this word is 4*a(n-1) and 4*a(n-2), respectively.
Inverse binomial transform of odd Pell bisection A001653. With a leading zero, inverse binomial transform of even Pell bisection A001542, divided by 2. - Paul Barry, May 16 2003
For positive n, a(n) equals the permanent of the n X n tridiagonal matrix with 4's along the main diagonal, and 2's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 19 2011
Pisano period lengths: 1, 1, 8, 1, 3, 8, 6, 1, 24, 3, 120, 8, 21, 6, 24, 1, 16, 24, 360, 3, ... . - R. J. Mathar, Aug 10 2012
Exponential convolution of Pell numbers (A000129) and companion Pell numbers (A002203), divided by 2 and leading zero dropped. - Vladimir Reshetnikov, Oct 07 2016

Crossrefs

Pairwise sums are in A086347.
Appears in A086346, A086347 and A086348. - Johannes W. Meijer, Aug 01 2010

Programs

  • Magma
    I:=[1,4]; [n le 2 select I[n] else 4*Self(n-1) + 4*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 16 2018
  • Maple
    A057087 := n -> `if`(n=0, 1, 4^n*hypergeom([1/2-n/2, -n/2], [-n], -1)):
    seq(simplify(A057087(n)), n=0..21); # Peter Luschny, Dec 17 2015
  • Mathematica
    Table[Fibonacci[n + 1, 2] 2^n, {n, 0, 20}] (* Vladimir Reshetnikov, Oct 08 2016 *)
    LinearRecurrence[{4,4},{1,4},30] (* Harvey P. Dale, Aug 17 2017 *)
  • PARI
    a(n)=if(n<0, 0, (2*I)^n*subst(I*poltchebi(n+1)+poltchebi(n),'x,-I)/2) /* Michael Somos, Sep 16 2005 */
    
  • PARI
    Vec(1/(1-4*x-4*x^2) + O(x^100)) \\ Altug Alkan, Dec 17 2015
    
  • Sage
    [lucas_number1(n,4,-4) for n in range(1, 23)] # Zerinvary Lajos, Apr 23 2009
    

Formula

a(n) = 4*(a(n-1) + a(n-2)), a(-1)=0, a(0)=1.
G.f.: 1/(1 - 4*x - 4*x^2).
a(n) = S(n, 2*i)*(-2*i)^n with S(n, x) := U(n, x/2), Chebyshev's polynomials of the 2nd kind, A049310.
a(n) = Sum_{k=0..n} 3^k*A063967(n,k). - Philippe Deléham, Nov 03 2006
a(n) = A000129(n+1)*A000079(n). - R. J. Mathar, Jul 08 2009
From Johannes W. Meijer, Aug 01 2010: (Start)
Limit_{k->oo} a(n+k)/a(k) = A084128(n) + 2*A057087(n-1)*sqrt(2);
Limit_{n->oo} A084128(n)/A057087(n-1) = sqrt(2). (End)
a(n) = 4^n*hypergeom([1/2-n/2, -n/2], [-n], -1) for n>=1. - Peter Luschny, Dec 17 2015