A057087 Scaled Chebyshev U-polynomials evaluated at i. Generalized Fibonacci sequence.
1, 4, 20, 96, 464, 2240, 10816, 52224, 252160, 1217536, 5878784, 28385280, 137056256, 661766144, 3195289600, 15428222976, 74494050304, 359689093120, 1736732573696, 8385686667264, 40489676963840, 195501454524416
Offset: 0
Links
- Indranil Ghosh, Table of n, a(n) for n = 0..1459
- Martin Burtscher, Igor Szczyrba, Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
- A. F. Horadam, Special properties of the sequence W_n(a,b; p,q), Fib. Quart., 5.5 (1967), 424-434. Case n->n+1, a=0,b=1; p=4, q=4.
- Tanya Khovanova, Recursive Sequences.
- Wolfdieter Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38 (2000) 408-419; Eqs.(39) and (45),rhs, m=4.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (4,4)
Crossrefs
Pairwise sums are in A086347.
Programs
-
Magma
I:=[1,4]; [n le 2 select I[n] else 4*Self(n-1) + 4*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 16 2018
-
Maple
A057087 := n -> `if`(n=0, 1, 4^n*hypergeom([1/2-n/2, -n/2], [-n], -1)): seq(simplify(A057087(n)), n=0..21); # Peter Luschny, Dec 17 2015
-
Mathematica
Table[Fibonacci[n + 1, 2] 2^n, {n, 0, 20}] (* Vladimir Reshetnikov, Oct 08 2016 *) LinearRecurrence[{4,4},{1,4},30] (* Harvey P. Dale, Aug 17 2017 *)
-
PARI
a(n)=if(n<0, 0, (2*I)^n*subst(I*poltchebi(n+1)+poltchebi(n),'x,-I)/2) /* Michael Somos, Sep 16 2005 */
-
PARI
Vec(1/(1-4*x-4*x^2) + O(x^100)) \\ Altug Alkan, Dec 17 2015
-
Sage
[lucas_number1(n,4,-4) for n in range(1, 23)] # Zerinvary Lajos, Apr 23 2009
Formula
a(n) = 4*(a(n-1) + a(n-2)), a(-1)=0, a(0)=1.
G.f.: 1/(1 - 4*x - 4*x^2).
a(n) = S(n, 2*i)*(-2*i)^n with S(n, x) := U(n, x/2), Chebyshev's polynomials of the 2nd kind, A049310.
a(n) = Sum_{k=0..n} 3^k*A063967(n,k). - Philippe Deléham, Nov 03 2006
From Johannes W. Meijer, Aug 01 2010: (Start)
a(n) = 4^n*hypergeom([1/2-n/2, -n/2], [-n], -1) for n>=1. - Peter Luschny, Dec 17 2015
Comments