cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A057090 Scaled Chebyshev U-polynomials evaluated at i*sqrt(7)/2. Generalized Fibonacci sequence.

Original entry on oeis.org

1, 7, 56, 441, 3479, 27440, 216433, 1707111, 13464808, 106203433, 837677687, 6607167840, 52113918689, 411047605703, 3242130670744, 25572247935129, 201700650241111, 1590910287233680, 12548276562323537, 98974307946900519, 780658091564568392
Offset: 0

Views

Author

Wolfdieter Lang, Aug 11 2000

Keywords

Comments

a(n) gives the length of the word obtained after n steps with the substitution rule 0->1^7, 1->(1^7)0, starting from 0. The number of 1's and 0's of this word is 7*a(n-1) and 7*a(n-2), resp.

Crossrefs

Cf. A000045.

Programs

  • Magma
    I:=[1,7]; [n le 2 select I[n] else 7*Self(n-1) + 7*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 24 2018
  • Maple
    a:= n-> (<<0|1>, <7|7>>^n. <<1, 7>>)[1, 1]:
    seq(a(n), n=0..30);
  • Mathematica
    Join[{a=0,b=1},Table[c=7*b+7*a;a=b;b=c,{n,100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 17 2011 *)
    LinearRecurrence[{7,7},{1,7},30] (* Harvey P. Dale, Nov 30 2012 *)
  • PARI
    Vec(1/(1-7*x-7*x^2) + O(x^30)) \\ Colin Barker, Jun 14 2015
    
  • Sage
    [lucas_number1(n,7,-7) for n in range(1, 21)] # Zerinvary Lajos, Apr 24 2009
    

Formula

a(n) = 7*(a(n-1) + a(n-2)), a(0)=1, a(1)=7.
a(n) = S(n, i*sqrt(7))*(-i*sqrt(7))^n with S(n, x) := U(n, x/2), Chebyshev's polynomials of the 2nd kind, A049310.
G.f.: 1/(1 - 7*x - 7*x^2).
a(n) = Sum_{k=0..n} 6^k*A063967(n,k). - Philippe Deléham, Nov 03 2006