cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A057092 Scaled Chebyshev U-polynomials evaluated at i*3/2. Generalized Fibonacci sequence.

Original entry on oeis.org

1, 9, 90, 891, 8829, 87480, 866781, 8588349, 85096170, 843160671, 8354311569, 82777250160, 820184055561, 8126651751489, 80521522263450, 797833566134451, 7905195795581109, 78327264255440040, 776092140459190341, 7689774642431673429, 76192801046017773930
Offset: 0

Views

Author

Wolfdieter Lang, Aug 11 2000

Keywords

Comments

a(n) gives the length of the word obtained after n steps with the substitution rule 0->1^9, 1->(1^9)0, starting from 0. The number of 1's and 0's of this word is 9*a(n-1) and 9*a(n-2), resp.
a(n) gives the number of n-digit integers which have no digit repeated 3 times in a row. Example: a(2)= 90 which is all the 2-digit integers. a(3) = 891 = all 900 3-digit integers except 111, 222, 333, ..., 999. - Toby Gottfried, Apr 01 2013
a(n) is the number of n-digit integers which do not have two consecutive zeros. - Ran Pan, Jan 26 2016

Programs

  • Magma
    I:=[1,9]; [n le 2 select I[n] else 9*Self(n-1) + 9*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 25 2018
  • Mathematica
    Join[{a=0,b=1},Table[c=9*b+9*a;a=b;b=c,{n,100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 17 2011 *)
    LinearRecurrence[{9,9}, {1,9}, 50] (* G. C. Greubel, Jan 25 2018 *)
  • PARI
    Vec(1/(1-9*x-9*x^2) + O(x^30)) \\ Colin Barker, Jun 14 2015
    
  • Sage
    [lucas_number1(n,9,-9) for n in range(1, 20)] # Zerinvary Lajos, Apr 26 2009
    

Formula

a(n) = 9*(a(n-1) + a(n-2)), a(-1)=0, a(0)=1.
a(n) = S(n, i*3)*(-i*3)^n with S(n, x) := U(n, x/2), Chebyshev's polynomials of the 2nd kind, A049310.
G.f.: 1/(1-9*x-9*x^2).
a(n) = Sum_{k, 0<=k<=n}8^k*A063967(n,k). - Philippe Deléham, Nov 03 2006