A057092 Scaled Chebyshev U-polynomials evaluated at i*3/2. Generalized Fibonacci sequence.
1, 9, 90, 891, 8829, 87480, 866781, 8588349, 85096170, 843160671, 8354311569, 82777250160, 820184055561, 8126651751489, 80521522263450, 797833566134451, 7905195795581109, 78327264255440040, 776092140459190341, 7689774642431673429, 76192801046017773930
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Martin Burtscher, Igor Szczyrba, Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
- A. F. Horadam, Special properties of the sequence W_n(a,b; p,q), Fib. Quart., 5.5 (1967), 424-434. Case n->n+1, a=0,b=1; p=9, q=9.
- Tanya Khovanova, Recursive Sequences
- W. Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38 (2000) 408-419. Eqs.(39) and (45),rhs, m=9.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (9,9).
Programs
-
Magma
I:=[1,9]; [n le 2 select I[n] else 9*Self(n-1) + 9*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 25 2018
-
Mathematica
Join[{a=0,b=1},Table[c=9*b+9*a;a=b;b=c,{n,100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 17 2011 *) LinearRecurrence[{9,9}, {1,9}, 50] (* G. C. Greubel, Jan 25 2018 *)
-
PARI
Vec(1/(1-9*x-9*x^2) + O(x^30)) \\ Colin Barker, Jun 14 2015
-
Sage
[lucas_number1(n,9,-9) for n in range(1, 20)] # Zerinvary Lajos, Apr 26 2009
Formula
a(n) = 9*(a(n-1) + a(n-2)), a(-1)=0, a(0)=1.
a(n) = S(n, i*3)*(-i*3)^n with S(n, x) := U(n, x/2), Chebyshev's polynomials of the 2nd kind, A049310.
G.f.: 1/(1-9*x-9*x^2).
a(n) = Sum_{k, 0<=k<=n}8^k*A063967(n,k). - Philippe Deléham, Nov 03 2006
Comments