A377856
Numbers k such that (21^k + 2^k)/23 is prime.
Original entry on oeis.org
11, 17, 47, 2663
Offset: 1
- P. Bourdelais, A Generalized Repunit Conjecture.
- J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
- H. Dubner and T. Granlund, Primes of the Form (b^n+1)/(b+1), J. Integer Sequences, 3 (2000), #P00.2.7.
- H. Lifchitz, Mersenne and Fermat primes field
- Eric Weisstein's World of Mathematics, Repunit.
Cf.
A057187,
A057188,
A062587,
A062589,
A127996,
A127997,
A128344,
A204940,
A217320,
A225807,
A228922,
A229542,
A375161,
A375236,
A377031.
A126856
Numbers n such that (31^n + 1)/32 is prime.
Original entry on oeis.org
109, 461, 1061, 50777
Offset: 1
- J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
- H. Dubner and T. Granlund, Primes of the Form (b^n+1)/(b+1), J. Integer Sequences, 3 (2000), #P00.2.7.
- Eric Weisstein's World of Mathematics, Repunit.
- H. Lifchitz, Mersenne and Fermat primes field
Cf.
A000978 = numbers n such that (2^n + 1)/3 is prime. Cf.
A007658,
A057171,
A057172,
A057173,
A057175,
A001562,
A057177,
A057178,
A057179,
A057180,
A057181,
A057182,
A057183,
A057184,
A057185,
A057186,
A057187,
A057188,
A057189,
A057190,
A057191,
A071380,
A071381,
A071382. Cf.
A084741,
A084742,
A065507,
A126659.
-
Do[ p=Prime[n]; If[ PrimeQ[ (31^p + 1)/32 ], Print[p] ], {n,1,1100} ]
-
is(n)=isprime((31^n+1)/32) \\ Charles R Greathouse IV, Feb 17 2017
A229145
Numbers k such that (36^k + 1)/37 is prime.
Original entry on oeis.org
31, 191, 257, 367, 3061, 110503, 1145393
Offset: 1
- J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
- H. Dubner and T. Granlund, Primes of the Form (b^n+1)/(b+1), J. Integer Sequences, 3 (2000), #P00.2.7.
- H. Lifchitz, Mersenne and Fermat primes field
- Eric Weisstein's World of Mathematics, Repunit.
Cf.
A000978 = numbers n such that (2^n + 1)/3 is prime. Cf.
A007658,
A057171,
A057172,
A057173,
A057175,
A001562,
A057177,
A057178,
A057179,
A057180,
A057181,
A057182,
A057183,
A057184,
A057185,
A057186,
A057187,
A057188,
A057189,
A057190,
A057191,
A071380,
A071381,
A071382,
A084741,
A084742,
A065507,
A126659,
A126856,
A185240.
-
Do[ p=Prime[n]; If[ PrimeQ[ (36^p + 1)/37 ], Print[p] ], {n, 1, 9592} ]
-
is(n)=isprime((36^n+1)/37) \\ Charles R Greathouse IV, Feb 17 2017
a(6) = 110503 (posted by Lelio R. Paula on primenumbers.net) from
Paul Bourdelais, Dec 08 2017
A185240
Numbers k such that (35^k + 1)/36 is prime.
Original entry on oeis.org
11, 13, 79, 127, 503, 617, 709, 857, 1499, 3823, 135623, 280979
Offset: 1
- Paul Bourdelais, A Generalized Repunit Conjecture
- J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
- H. Dubner and T. Granlund, Primes of the Form (b^n+1)/(b+1), J. Integer Sequences, 3 (2000), #P00.2.7.
- H. Lifchitz, Mersenne and Fermat primes field
- Eric Weisstein's World of Mathematics, Repunit
Cf.
A000978 = numbers n such that (2^n + 1)/3 is prime. Cf.
A007658,
A057171,
A057172,
A057173,
A057175,
A001562,
A057177,
A057178,
A057179,
A057180,
A057181,
A057182,
A057183,
A057184,
A057185,
A057186,
A057187,
A057188,
A057189,
A057190,
A057191,
A071380,
A071381,
A071382. Cf.
A084741,
A084742,
A065507,
A126659,
A126856.
-
Do[ p=Prime[n]; If[ PrimeQ[ (35^p + 1)/36 ], Print[p] ], {n, 1, 9592} ]
-
is(n)=isprime((35^n+1)/36) \\ Charles R Greathouse IV, Feb 17 2017
a(11)=135623 found as probable prime and added by
Paul Bourdelais, Jul 05 2018
A229524
Numbers k such that (38^k + 1)/39 is prime.
Original entry on oeis.org
5, 167, 1063, 1597, 2749, 3373, 13691, 83891, 131591
Offset: 1
- P. Bourdelais, A Generalized Repunit Conjecture
- J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
- H. Dubner and T. Granlund, Primes of the Form (b^n+1)/(b+1), J. Integer Sequences, 3 (2000), #P00.2.7.
- H. Lifchitz, Mersenne and Fermat primes field
- Eric Weisstein's World of Mathematics, Repunit.
Cf.
A000978 = numbers n such that (2^n + 1)/3 is prime. Cf.
A007658,
A057171,
A057172,
A057173,
A057175,
A001562,
A057177,
A057178,
A057179,
A057180,
A057181,
A057182,
A057183,
A057184,
A057185,
A057186,
A057187,
A057188,
A057189,
A057190,
A057191,
A071380,
A071381,
A071382,
A084741,
A084742,
A065507,
A126659,
A126856,
A185240,
A229145.
-
Do[ p=Prime[n]; If[ PrimeQ[ (38^p + 1)/39 ], Print[p] ], {n, 1, 9592} ]
-
is(n)=ispseudoprime((38^n+1)/39) \\ Charles R Greathouse IV, Feb 17 2017
a(9)=131591 corresponds to a probable prime discovered by
Paul Bourdelais, Jul 03 2018
A229663
Numbers n such that (40^n + 1)/41 is prime.
Original entry on oeis.org
53, 67, 1217, 5867, 6143, 11681, 29959
Offset: 1
- J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
- H. Dubner and T. Granlund, Primes of the Form (b^n+1)/(b+1), J. Integer Sequences, 3 (2000), #P00.2.7.
- H. Lifchitz, Mersenne and Fermat primes field
- Eric Weisstein's World of Mathematics, Repunit.
Cf.
A000978 = numbers n such that (2^n + 1)/3 is prime. Cf.
A007658,
A057171,
A057172,
A057173,
A057175,
A001562,
A057177,
A057178,
A057179,
A057180,
A057181,
A057182,
A057183,
A057184,
A057185,
A057186,
A057187,
A057188,
A057189,
A057190,
A057191,
A071380,
A071381,
A071382,
A084741,
A084742,
A065507,
A126659,
A126856,
A185240,
A229145,
A229524.
-
Do[ p=Prime[n]; If[ PrimeQ[ (40^p + 1)/41 ], Print[p] ], {n, 1, 9592} ]
-
is(n)=ispseudoprime((40^n+1)/41) \\ Charles R Greathouse IV, Feb 17 2017
A230036
Numbers n such that (39^n + 1)/40 is prime.
Original entry on oeis.org
3, 13, 149, 15377
Offset: 1
- J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
- H. Dubner and T. Granlund, Primes of the Form (b^n+1)/(b+1), J. Integer Sequences, 3 (2000), #P00.2.7.
- H. Lifchitz, Mersenne and Fermat primes field
- Eric Weisstein's World of Mathematics, Repunit.
Cf.
A000978 (numbers n such that (2^n + 1)/3 is prime).
Cf.
A007658,
A057171,
A057172,
A057173,
A057175,
A001562,
A057177,
A057178,
A057179,
A057180,
A057181,
A057182,
A057183,
A057184,
A057185,
A057186,
A057187,
A057188,
A057189,
A057190,
A057191,
A071380,
A071381,
A071382,
A084741,
A084742,
A065507,
A126659,
A126856,
A185240,
A229145,
A229524.
-
Do[ p=Prime[n]; If[ PrimeQ[ (39^p + 1)/40 ], Print[p] ], {n, 1, 9592} ]
-
is(n)=ispseudoprime((39^n+1)/40) \\ Charles R Greathouse IV, Feb 17 2017
A231604
Numbers n such that (42^n + 1)/43 is prime.
Original entry on oeis.org
3, 709, 1637, 17911, 127609, 172663
Offset: 1
- J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
- P. Bourdelais, A Generalized Repunit Conjecture
- H. Dubner and T. Granlund, Primes of the Form (b^n+1)/(b+1), J. Integer Sequences, 3 (2000), #P00.2.7.
- H. Lifchitz, Mersenne and Fermat primes field
- Eric Weisstein's World of Mathematics, Repunit.
Cf.
A000978 = numbers n such that (2^n + 1)/3 is prime. Cf.
A007658,
A057171,
A057172,
A057173,
A057175,
A001562,
A057177,
A057178,
A057179,
A057180,
A057181,
A057182,
A057183,
A057184,
A057185,
A057186,
A057187,
A057188,
A057189,
A057190,
A057191,
A071380,
A071381,
A071382,
A084741,
A084742,
A065507,
A126659,
A126856,
A185240,
A229145,
A229524,
A230036,
A229663.
-
Do[ p=Prime[n]; If[ PrimeQ[ (42^p + 1)/43 ], Print[p] ], {n, 1, 9592} ]
-
is(n)=ispseudoprime((42^n+1)/43) \\ Charles R Greathouse IV, Feb 20 2017
a(5)=127609 corresponds to a probable prime discovered by
Paul Bourdelais, Jul 02 2018
a(6)=172663 corresponds to a probable prime discovered by
Paul Bourdelais, Jul 29 2019
A231865
Numbers n such that (43^n + 1)/44 is prime.
Original entry on oeis.org
5, 7, 19, 251, 277, 383, 503, 3019, 4517, 9967, 29573
Offset: 1
- J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
- H. Dubner and T. Granlund, Primes of the Form (b^n+1)/(b+1), J. Integer Sequences, 3 (2000), #P00.2.7.
- H. Lifchitz, Mersenne and Fermat primes field
- Eric Weisstein's World of Mathematics, Repunit.
Cf.
A000978 = numbers n such that (2^n + 1)/3 is prime. Cf.
A007658,
A057171,
A057172,
A057173,
A057175,
A001562,
A057177,
A057178,
A057179,
A057180,
A057181,
A057182,
A057183,
A057184,
A057185,
A057186,
A057187,
A057188,
A057189,
A057190,
A057191,
A071380,
A071381,
A071382,
A084741,
A084742,
A065507,
A126659,
A126856,
A185240,
A229145,
A229524,
A230036,
A229663,
A231604.
-
Do[ p=Prime[n]; If[ PrimeQ[ (43^p + 1)/44 ], Print[p] ], {n, 1, 9592} ]
-
is(n)=ispseudoprime((43^n+1)/44) \\ Charles R Greathouse IV, Feb 20 2017
A235683
Numbers n such that (46^n + 1)/47 is prime.
Original entry on oeis.org
7, 23, 59, 71, 107, 223, 331, 2207, 6841, 94841
Offset: 1
- J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
- H. Dubner and T. Granlund, Primes of the Form (b^n+1)/(b+1), J. Integer Sequences, 3 (2000), #P00.2.7.
- H. Lifchitz, Mersenne and Fermat primes field
- Eric Weisstein's World of Mathematics, Repunit.
Cf.
A000978 = numbers n such that (2^n + 1)/3 is prime. Cf.
A007658,
A057171,
A057172,
A057173,
A057175,
A001562,
A057177,
A057178,
A057179,
A057180,
A057181,
A057182,
A057183,
A057184,
A057185,
A057186,
A057187,
A057188,
A057189,
A057190,
A057191,
A071380,
A071381,
A071382,
A084741,
A084742,
A065507,
A126659,
A126856,
A185240,
A229145,
A229524,
A230036,
A229663,
A231604,
A231865.
-
Do[ p=Prime[n]; If[ PrimeQ[ (46^p + 1)/47 ], Print[p] ], {n, 1, 9592} ]
-
is(n)=ispseudoprime((46^n+1)/47) \\ Charles R Greathouse IV, May 22 2017
Showing 1-10 of 33 results.
Comments