A057211 Alternating runs of ones and zeros, where the n-th run has length n.
1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1
References
- K. H. Rosen, Discrete Mathematics and its Applications, 1999, Fourth Edition, page 79, exercise 10 (g).
Links
- Reinhard Zumkeller, Rows n=1..125 of triangle, flattened
- Index entries for characteristic functions
Programs
-
Haskell
a057211 n = a057211_list !! (n-1) a057211_list = concat $ zipWith ($) (map replicate [1..]) a059841_list -- Reinhard Zumkeller, Mar 18 2011
-
Maple
A002024 := n->round(sqrt(2*n)):A057211 := n->(1-(-1)^A002024(n))/2; # alternative Maple program: T:= n-> [irem(n, 2)$n][]: seq(T(n), n=1..14); # Alois P. Heinz, Oct 06 2021
-
Mathematica
Flatten[Table[{PadRight[{},n,1],PadRight[{},n+1,0]},{n,1,21,2}]] (* Harvey P. Dale, Jun 07 2015 *)
-
Python
from math import isqrt def A057211(n): return int(bool(isqrt(n<<3)+1&2)) # Chai Wah Wu, Jun 19 2024
Formula
a(n) = (1-(-1)^A002024(n))/2, where A002024(n)=round(sqrt(2*n)). - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Feb 23 2003
Also a(n) = A000035(A002024(n)) = A002024(n) mod 2 = A002024(n)-2*floor(A002024(n)/2). - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Feb 23 2003
G.f.: x/(1-x)*sum_{n>=0} (-1)^n*x^(n*(n+1)/2). - Mircea Merca, Mar 05 2014
a(n) = 1 - A057212(n). - Alois P. Heinz, Oct 06 2021
Extensions
Definition amended by Georg Fischer, Oct 06 2021
Comments