cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A057333 Numbers of n-digit primes that undulate.

Original entry on oeis.org

4, 20, 74, 347, 1743, 8385, 44355, 229952, 1235489, 6629026, 37152645, 202017712, 1142393492, 6333190658
Offset: 1

Views

Author

Patrick De Geest, Sep 15 2000

Keywords

Comments

'Undulate' means that the alternate digits are consistently greater than or less than the digits adjacent to them (e.g., 70769). Smoothly undulating palindromic primes (e.g., 95959) are a subset and included in the count.

References

  • C. A. Pickover, "Wonders of Numbers", Oxford New York 2001, Chapter 52, pp. 123-124, 316-317.

Crossrefs

Programs

  • Python
    from sympy import isprime
    def f(w,dir):
        if dir == 1:
            for s in w:
                for t in range(int(s[-1])+1,10):
                    yield s+str(t)
        else:
            for s in w:
                for t in range(0,int(s[-1])):
                    yield s+str(t)
    def A057333(n):
        c = 0
        for d in '123456789':
            x = d
            for i in range(1,n):
                x = f(x,(-1)**i)
            c += sum(1 for p in x if isprime(int(p)))
            if n > 1:
                y = d
                for i in range(1,n):
                    y = f(y,(-1)**(i+1))
                c += sum(1 for p in y if isprime(int(p)))
        return c # Chai Wah Wu, Apr 25 2021

Extensions

Offset corrected and a(10)-a(11) from Donovan Johnson, Aug 08 2010
a(12) from Giovanni Resta, Feb 24 2013
a(2) corrected by Chai Wah Wu, Apr 25 2021
a(13)-a(14) from Chai Wah Wu, May 02 2021

A343677 Number of (2n+1)-digit undulating alternating palindromic primes.

Original entry on oeis.org

4, 6, 19, 34, 100, 241, 697, 1779, 6590, 16585, 57237, 179291, 591325, 1707010, 6520756, 18271423, 65212230, 210339179, 706823539
Offset: 0

Views

Author

Chai Wah Wu, Apr 25 2021

Keywords

Comments

a(n) is the number of (2n+1)-digit terms in A343675.
a(n) <= A057332(n).

Crossrefs

Programs

  • Python
    from sympy import isprime
    def f(w):
        for s in w:
            for t in range(int(s[-1])+1,10,2):
                yield s+str(t)
    def g(w):
        for s in w:
            for t in range(1-int(s[-1])%2,int(s[-1]),2):
                yield s+str(t)
    def A343677(n):
        if n == 0:
            return 4
        c = 0
        for d in '1379':
            x = d
            for i in range(1,n+1):
                x = g(x) if i % 2 else f(x)
            c += sum(1 for p in x if isprime(int(p+p[-2::-1])))
            y = d
            for i in range(1,n+1):
                y = f(y) if i % 2 else g(y)
            c += sum(1 for p in y if isprime(int(p+p[-2::-1])))
        return c

Extensions

a(17)-a(18) from Chai Wah Wu, May 02 2021

A343462 Number of n-digit positive integers that undulate.

Original entry on oeis.org

9, 81, 525, 3105, 18939, 114381, 693129, 4195557, 25405586, 153820395, 931359050, 5639156409, 34143908573, 206733865761, 1251728824798, 7578945799704, 45888871327435, 277847147039527, 1682304127857000, 10185986079451152, 61673933253012813, 373422269794761171, 2260990733622821388
Offset: 1

Views

Author

David A. Corneth, Apr 16 2021

Keywords

Comments

This is also the number of (2*n-1)-digit palindromes that undulate.
Classifying undulating numbers with n digits in initial digits and sign of first digit - second digit eases computation.

Examples

			a(2) = 81 as there are 90 2-digit positive integers (10, 11, ..., 99). Of those, 11, 22, ..., 99 do not undulate as there is a pair of consecutive digits that are equal. There are nine nonundulating 2-digit numbers, leaving 90-9 = 81 that do undulate.
134 does not undulate as there are two pairs of consecutive digits where the right one is in both cases either smaller or larger. (In this case 1 < 3 and 3 < 4.)
143 does undulate since 1 < 4 and 4 > 3.
		

Crossrefs

Cf. A057332. Apart from the first 2 terms, the same as A152464.

Programs

  • PARI
    first(n) = { my(res = vector(n), vup, vdown, nvup, nvdown); res[1] = 9; vup = vector(9, i, 1); vdown = vector(9, i, 1); for(i = 2, n, nvup = vector(9); nvdown = vector(9); nvdown[1] = vdown[9]; for(i = 2, 9, nvdown[i] = nvdown[i-1]+vup[i-1] ); for(i = 1, 8, nvup[i] = nvdown[9-i] ); vup = nvup; vdown = nvdown; res[i] = vecsum(vup)+vecsum(vdown)); res }
    
  • Python
    def aupton(terms):
      up, dn, alst = [0] + [1]*9, [0] + [1]*9, [9]
      for n in range(2, terms+1):
        up_next = [sum(dn[j] for j in range(i)) for i in range(10)]
        dn_next = [sum(up[j] for j in range(i+1, 10)) for i in range(10)]
        up, dn = up_next, dn_next
        alst.append(sum(up + dn))
      return alst
    print(aupton(22)) # Michael S. Branicky, Apr 16 2021
    
  • Python
    # alternate program as a linear system
    import numpy as np
    from sympy import Matrix
    def aupton(terms):
      x = Matrix([0] + [1]*9 + [0] + [1]*9)
      c = Matrix([[1]*20])
      z10 = np.zeros((10, 10), dtype=np.int64)
      o10 = np.ones((10, 10), dtype=np.int64)
      A = Matrix(np.block([[z10, np.tril(o10, -1)], [np.triu(o10, +1), z10]]))
      alst = [9]
      for n in range(2, terms+1):
        x = A*x
        alst.append((c*x)[0])
      return alst
    print(aupton(22)) # Michael S. Branicky, Apr 16 2021

Formula

a(n) = 45*a(n-2) - 330*a(n-4) + 924*a(n-6) - 1287*a(n-8) + 1001*a(n-10) - 455*a(n-12) + 120*a(n-14) - 17*a(n-16) + a(n-18) for n >= 20. - Michael S. Branicky, Apr 17 2021
From Chai Wah Wu, Apr 24 2021: (Start)
a(n) = 5*a(n-1) + 10*a(n-2) - 20*a(n-3) - 15*a(n-4) + 21*a(n-5) + 7*a(n-6) - 8*a(n-7) - a(n-8) + a(n-9) for n > 10.
G.f.: x*(-8*x^9 + 7*x^8 + 63*x^7 - 45*x^6 - 162*x^5 + 81*x^4 + 150*x^3 - 30*x^2 - 36*x - 9)/(x^9 - x^8 - 8*x^7 + 7*x^6 + 21*x^5 - 15*x^4 - 20*x^3 + 10*x^2 + 5*x - 1). (End)
Showing 1-3 of 3 results.