A057360 a(n) = floor(3*n/8).
0, 0, 0, 1, 1, 1, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 12, 12, 12, 13, 13, 13, 14, 14, 15, 15, 15, 16, 16, 16, 17, 17, 18, 18, 18, 19, 19, 19, 20, 20, 21, 21, 21, 22, 22, 22, 23, 23, 24, 24, 24, 25, 25, 25, 26, 26, 27, 27, 27, 28, 28, 28
Offset: 0
References
- N. Dershowitz and E. M. Reingold, Calendrical Calculations, Cambridge University Press, 1997.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, NY, 1994.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- N. Dershowitz and E. M. Reingold, Calendrical Calculations Web Site.
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,1,-1).
Crossrefs
Programs
-
Magma
[Floor(3*n/8): n in [0..80]]; // Vincenzo Librandi, Jul 07 2011
-
Maple
A057360:=n->floor(3*n/8): seq(A057360(n), n=0..100); # Wesley Ivan Hurt, May 15 2015
-
Mathematica
Floor[3 Range[0, 100]/8] (* Wesley Ivan Hurt, May 15 2015 *) LinearRecurrence[{1,0,0,0,0,0,0,1,-1},{0,0,0,1,1,1,2,2,3},80] (* Harvey P. Dale, Jan 10 2025 *)
-
PARI
a(n)=3*n>>3 \\ Charles R Greathouse IV, Jul 07 2011
Formula
G.f.: x^3*(1+x^3+x^5) / ( (1+x)*(x^2+1)*(x^4+1)*(x-1)^2 ).
From Wesley Ivan Hurt, May 15 2015: (Start)
a(n) = a(n-1)+a(n-8)-a(n-9).
Sum_{n>=3} (-1)^(n+1)/a(n) = Pi/(6*sqrt(3)) + log(3)/2. - Amiram Eldar, Sep 30 2022
Extensions
Numerator of g.f. corrected by R. J. Mathar, Feb 20 2011
Comments