cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A074046 a(n)=a(n-1)*a(n-2)*a(n-3)*(1/a(n-1)+1/a(n-2)+1/a(n-3)) starting with a(1)=a(2)=1 and a(3)=2.

Original entry on oeis.org

1, 1, 2, 5, 17, 129, 2923, 428951, 1309535519, 565555596556379, 740857737860237412264699, 418997210078479016314891376985981834403, 310417325465458849274468827944195726858840449351291150876911355
Offset: 1

Views

Author

Henry Bottomley, Aug 14 2002

Keywords

Examples

			a(6)=17*5*2*(1/17+1/5+1/2)=129.
		

Crossrefs

Cf. A074047. In more than one sense A074046 comes between A000045 and A057438.
See also A121810 and A203761 and references therein.

Formula

a(n) tends towards a(n-1)^phi and 1.31809...^(phi^n) where phi=(1+sqrt(5))/2=1.6180339887...
a(n)=a(n-1)*a(n-2)+a(n-3)*a(n-1)+a(n-2)*a(n-3). - M. F. Hasler, Jan 01 2013

A094304 Sum of all possible sums formed from all but one of the previous terms, starting 1.

Original entry on oeis.org

1, 0, 1, 4, 18, 96, 600, 4320, 35280, 322560, 3265920, 36288000, 439084800, 5748019200, 80951270400, 1220496076800, 19615115520000, 334764638208000, 6046686277632000, 115242726703104000, 2311256907767808000, 48658040163532800000, 1072909785605898240000
Offset: 1

Views

Author

Amarnath Murthy, Apr 29 2004

Keywords

Comments

Apart from initial 1, same sequence as A001563. Additive analog of A057438.
a(1) = 1, for n >= 2: a(n) = sum of previous terms * (n-2) = (Sum_(i=1...n-2) a(i)) * (n-2). a(n) = A001563(n-2) = A094258(n-1) for n >= 3. - Jaroslav Krizek, Oct 16 2009

Examples

			a(2) = 0 as there is only one previous term and empty sum is taken to be 0.
a(4) = (a(1) +a(2))+ (a(1) +a(3)) + (a(2) +a(3)) = (1+0) +(1+1) +(0+1) = 4.
a(5) = (a(1)+a(2)+a(3)) +(a(1)+a(2)+ a(4)) +(a(1)+a(3)+a(4)) +(a(2)+a(3)+a(4)) = (1+0+1) +(1+0+4) +(1+1+4) +(0+1+4) = 2 + 5 + 6 + 5 = 18.
		

Crossrefs

Programs

  • Maple
    a := n -> (n-2)*(n-2)!: 1,seq(a(n), n=2..23); # Emeric Deutsch, May 01 2008
  • Mathematica
    In[2]:= l = {1}; Do[k = Length[l] - 1; p = Plus @@ Flatten[Select[Subsets[l], Length[ # ]==k& ]]; AppendTo[l, p], {n, 20}]; l (* Ryan Propper, May 28 2006 *)
  • PARI
    v=vector(30);v[1]=1;v[2]=0;for(n=3,#v,s=0;for(i=1,2^(n-1)-1, vb=binary(i); if(hammingweight(vb)==n-2,s=s+sum(j=1,#vb, if(vb[j], v[n-#vb+j-1]))));v[n]=s;print1(s,",")) /* Ralf Stephan, Sep 22 2013 */

Formula

a(n) = (n-2)!(n-2) for n>=2. - Emeric Deutsch, May 01 2008
G.f.: x*T(0), where T(k) = 1 - x^2*(k+1)^2/(x^2*(k+1)^2 - (1 -x -2*x*k)*(1 -3*x -2*x*k)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 10 2013
a(n) = S1(n,1) - S1(n-1,1), where S1 are the unsigned Stirling cycle numbers. - Peter Luschny, Apr 10 2016
a(n) = A122974(n-1,n-1). - Alois P. Heinz, Nov 24 2019

Extensions

Edited by N. J. A. Sloane, May 29 2006

A074056 a(n)=a(n-1)^3/a(n-2)^2+a(n-1)*a(n-2) with a(1)=a(2)=1.

Original entry on oeis.org

1, 1, 2, 10, 270, 199530, 109021396230, 32547610062433062370530, 2900907183084129462928443491816490142071240030, 23044287863704114233982017840826804806870854633710605340763217534502946372713488874512819930
Offset: 1

Views

Author

Henry Bottomley, Aug 14 2002

Keywords

Examples

			a(5)=10^3/2^2+10*2=250+20=270.
		

Crossrefs

Partial products of A057438.

Formula

a(n) =a(n-1)*A057438(n) =A057438(n+2)-A057438(n+1)^2 and is about 0.365177806085453...*1.2292734309189943...^(2^n).

A108176 a(1) = 1, a(n) = (Sum_{k=1..floor(n/2)} 1/a(n + 1 - 2k))*(Product_{k=1..floor(n/2)} a(n + 1 - 2k)).

Original entry on oeis.org

1, 1, 1, 2, 3, 7, 23, 164, 3786, 620973, 2351006074, 1459911295051236, 3432260322166663402961472, 5010795611887306064313121202903094714708, 17198354961167628388233455836547370709483687001035342768448084064
Offset: 1

Views

Author

Leroy Quet, Jun 13 2005

Keywords

Crossrefs

Cf. A057438.

Programs

  • Maple
    a[1]:=1: for n from 2 to 25 do a[n]:=sum(1/a[n+1-2*j],j=1..floor(n/2))*product(a[n+1-2*k],k=1..floor(n/2)) od: seq(a[n],n=1..16); # Emeric Deutsch, Jun 14 2005
  • Mathematica
    a[1] = 1; a[n_] := a[n] = Sum[1/a[n + 1 - 2k], {k, Floor[n/2]}] Product[ a[n + 1 - 2k], {k, Floor[n/2]}]; Table[ a[n], {n, 15}] (* Robert G. Wilson v, Jun 14 2005 *)

Formula

For n >= 2, a(n+4) = a(n+1)*(a(n+2) - a(n)a(n+1)) + a(n+2)a(n+3).

Extensions

More terms from Robert G. Wilson v and Emeric Deutsch, Jun 14 2005

A203903 a(n)=f(a(1),a(2),...,a(n-1)), where f=(n-2)-nd elementary symmetric function and a(1)=1, a(2)=1, a(3)=1.

Original entry on oeis.org

1, 1, 1, 3, 10, 103, 10639, 113191411, 12812295557045431, 164154917441086094769014370809371, 26946836920089791747880319422619013022132207748812110372395151551
Offset: 1

Views

Author

Clark Kimberling, Jan 07 2012

Keywords

Comments

The same recurrence applied to initial values
a(1)=1, a(2)=1, a(3)=2 yields A057438.
The same recurrence applied to initial values
a(1)=1, a(2)=2, a(3)=3 yields A061482.

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[2] = 1; a[3] = 1;
    t[3] = {a[1], a[2], a[3]};
    a[n_] := SymmetricPolynomial[n - 2, t[n - 1]]
    t[n_] := Append[t[n - 1], {a[n]}]
    Flatten[Table[a[n], {n, 1, 12}]]  (* A203903 *)
Showing 1-5 of 5 results.