cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A057470 Let prime(i) = i-th prime, let twin(n) = (P,Q) be n-th pair of twin primes; sequence gives prime(P).

Original entry on oeis.org

5, 11, 31, 59, 109, 179, 277, 353, 547, 587, 773, 859, 1063, 1153, 1201, 1433, 1499, 1723, 1823, 2063, 2341, 2897, 3001, 3259, 3733, 4133, 4397, 4549, 4759, 4933, 6217, 6311, 6353, 6653, 6841, 8101, 8221, 8377, 8513, 8747, 9293, 9973, 10433, 10559
Offset: 1

Views

Author

Cino Hilliard, Sep 10 2000

Keywords

Examples

			The 3rd pair of twin primes is twin(3) = (11,13), so a(3) = prime(11) = 31.
		

Crossrefs

Programs

  • Mathematica
    Prime/@Select[Partition[Prime[Range[300]],2,1],#[[2]]-#[[1]]==2&][[;;,1]] (* Harvey P. Dale, May 21 2023 *)

Formula

From Amiram Eldar, Feb 14 2025: (Start)
a(n) = prime(A001359(n)).
a(n) = A151799(A151799(A057473(n))). (End)

Extensions

More terms from James Sellers, Sep 11 2000

A096474 Difference prime(q+2) - prime(q) as q runs through the lesser members of twin primes (A001359).

Original entry on oeis.org

6, 6, 10, 8, 18, 12, 6, 14, 16, 12, 24, 18, 24, 18, 16, 14, 24, 18, 24, 18, 10, 12, 18, 40, 28, 20, 24, 18, 28, 10, 12, 12, 8, 8, 22, 16, 12, 12, 14, 14, 26, 36, 24, 30, 24, 8, 18, 30, 12, 22, 22, 16, 18, 24, 10, 14, 18, 14, 10, 20, 10, 32, 32, 12, 10, 44, 30, 18, 16, 36, 14, 12
Offset: 1

Views

Author

Labos Elemer, Jun 23 2004

Keywords

Examples

			{q, q+2} = {17, 19} is the 4th twin-pair and prime(19) - prime(17) = 67 - 59 = 8, so a(4) = 8.
		

Crossrefs

Programs

  • Mathematica
    {ta=Table[0, {1300}], tb=Table[0, {1300}], tc=Table[0, {1300}], u=1}; Do[s=Prime[n+1]-Prime[n];If[Equal[s, 2], ta[[u]]=Prime[Prime[n+1]]-Prime[Prime[n]];tb[[u]]=n; tc[[u]]=Prime[n];u=u+1], {n, 1, 10000}];ta
    Prime[#[[2]]]-Prime[#[[1]]]&/@Select[Partition[Prime[Range[500]],2,1],#[[2]]-#[[1]]==2&] (* Harvey P. Dale, Dec 26 2023 *)
  • PARI
    lista(nn) = {forprime(q=2, nn, if (isprime(q+2), print1(prime(q+2)-prime(q), ", ")););} \\ Michel Marcus, Jul 27 2017

Formula

a(n) = prime(A006512(n)) - prime(A001359(n)).
a(n) = A057473(n) - A057470(n). - Michel Marcus, Jul 27 2017

A080700 Product of upper bound twin-prime-indexed primes and their lower bound twin prime.

Original entry on oeis.org

33, 85, 451, 1139, 3683, 7831, 16697, 26057, 56863, 64093, 109189, 130673, 194573, 223661, 239749, 328469, 363997, 468329, 519007, 647191, 815797, 1218871, 1301189, 1520839, 1959481, 2363057, 2648179, 2817839, 3068467, 3257437
Offset: 1

Views

Author

Cino Hilliard, Mar 04 2003

Keywords

Examples

			The 3rd pair of twin primes is twin(3) = (11,13), prime(13) = 41, a(3) = 41*11 = 451.
		

Crossrefs

Programs

  • Mathematica
    Prime[Last[#]]First[#]&/@Select[Partition[Prime[Range[200]],2,1], Last[#]- First[#] ==2&]  (* Harvey P. Dale, Apr 23 2011 *)
  • PARI
    twipxpindex3(n) = {sr=0; pr=1; for(x=1,n, p1=prime(x); p2=prime(x+1); if((p2-p1)==2, pr=p1*prime(prime(x+1)); sr+=1.0/pr; print1(pr" ")); ); print(); print(sr) }

Formula

Let prime(i) = i-th prime, let twin(n) = (P, Q) be n-th pair of twin primes; sequence gives prime(Q)*P.

A080701 Product of upper bound twin-prime-indexed primes and their upper bound twin prime.

Original entry on oeis.org

55, 119, 533, 1273, 3937, 8213, 17263, 26791, 57989, 65291, 110783, 132427, 196747, 226003, 242183, 331363, 367043, 471811, 522701, 651353, 820499, 1224689, 1307227, 1527437, 1967003, 2371363, 2657021, 2826973, 3078041, 3267323
Offset: 1

Views

Author

Cino Hilliard, Mar 04 2003

Keywords

Examples

			The 3rd pair of twin primes is twin(3) = (11,13), prime(13) = 41, a(3) = 41*13 = 533.
		

Crossrefs

Programs

  • Mathematica
    #*Prime[#]&/@(Transpose[Select[Partition[Prime[Range[200]],2,1], Last[#]- First[#] ==2&]][[2]]) (* Harvey P. Dale, Jun 04 2014 *)

Formula

Let prime(i) = i-th prime, let twin(n) = (P, Q) be n-th pair of twin primes; sequence gives prime(Q)*Q.
Showing 1-4 of 4 results.