A057524 Number of 3 x n binary matrices without unit columns up to row and column permutations.
1, 3, 7, 14, 25, 41, 64, 95, 136, 189, 256, 339, 441, 564, 711, 885, 1089, 1326, 1600, 1914, 2272, 2678, 3136, 3650, 4225, 4865, 5575, 6360, 7225, 8175, 9216, 10353, 11592, 12939, 14400, 15981, 17689, 19530, 21511, 23639, 25921, 28364, 30976
Offset: 0
Examples
There are 7 binary 3x2 matrices without unit columns up to row and column permutations: [0 0] [0 0] [0 0] [0 1] [0 1] [0 1] [1 1] [0 0] [0 1] [1 1] [0 1] [1 0] [1 1] [1 1] [0 0] [0 1] [1 1] [0 1] [1 1] [1 1] [1 1].
Links
- Author?, Table of n, a(n) for n = 0..1374
- Index entries for linear recurrences with constant coefficients, signature (3,-2,-1,0,1,2,-3,1).
Programs
-
Mathematica
CoefficientList[ Series[ 1/(1 - x^3)/(1 - x^2)/(1 - x)^3, {x, 0, 42}], x] (* Jean-François Alcover, Mar 26 2013 *)
Formula
(1/6)*(Z(S_n; 5, 5, ...)+3*Z(S_n; 3, 5, 3, 5, ...)+2*Z(S_n; 2, 2, 5, 2, 2, 5, ...)) where Z(S_n; x_1, x_2, x_3, ...) is cycle index of symmetric group S_n of degree n.
G.f.: 1/(1-x^3)/(1-x^2)/(1-x)^3.
Let P(i,k) be the number of integer partitions of n into k parts, then with k=3 we have a(n) = Sum_{m=1..n} Sum_{i=k..m} P(i,k). - Thomas Wieder, Feb 18 2007
a(n) = Sum_{m=0..n} (n-m+1)*floor(((m+3)^2+3)/12). [Renzo Benedetti, Sep 30 2009]
a(n) = floor( ((n+2)*(n+6)/12)^2 ) = round( ((n+2)*(n+6)/12)^2 ). [Renzo Benedetti, Jul 25 2012]
Partial sums of A000601. - R. J. Mathar, Jul 25 2012
Extensions
More terms from James Sellers, Sep 07 2000
Comments