cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A057570 Numbers of the form n*(7n+-1)/2.

Original entry on oeis.org

0, 3, 4, 13, 15, 30, 33, 54, 58, 85, 90, 123, 129, 168, 175, 220, 228, 279, 288, 345, 355, 418, 429, 498, 510, 585, 598, 679, 693, 780, 795, 888, 904, 1003, 1020, 1125, 1143, 1254, 1273, 1390, 1410, 1533, 1554, 1683, 1705, 1840, 1863, 2004
Offset: 1

Views

Author

N. J. A. Sloane, Oct 04 2000

Keywords

Comments

Also integers of the form Sum_{k = 1..n} k/7. - Alonso del Arte, Jan 20 2012
Sequence provides all integers m such that 56*m + 1 is a square. [Bruno Berselli, Oct 07 2015]
The sequence terms occur as the exponents in the expansion of Product_{n >= 1} (1 - x^(7*n)) * (1 + x^(7*n-3)) * (1 + x^(7*n-4)) = 1 + x^3 + x^4 + x^13 + x^15 + x^30 + x^33 + .... Cf. A363801. - Peter Bala, Nov 21 2024

Crossrefs

Programs

  • Mathematica
    Select[Table[Plus@@Range[n]/7, {n, 0, 199}], IntegerQ] (* Alonso del Arte, Jan 20 2012 *)
    CoefficientList[Series[-x (3 + x + 3 x^2) / ((1 + x)^2 (x - 1)^3), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 19 2013 *)
    LinearRecurrence[{1,2,-2,-1,1},{0,3,4,13,15},50] (* Harvey P. Dale, Sep 17 2023 *)
  • PARI
    a(n)=(14*n*(n-1)+5*(2*n-1)*(-1)^n+5)/16 \\ Charles R Greathouse IV, Sep 24 2015

Formula

G.f.: -x^2*(3+x+3*x^2) / ( (1+x)^2*(x-1)^3 ). - R. J. Mathar, Jan 25 2011
a(n) = +1*a(n-1)+2*a(n-2)-2*a(n-3)-1*a(n-4)+1*a(n-5). - Joerg Arndt, Jan 25 2011
a(n) = (14*n*(n-1)+5*(2*n-1)*(-1)^n+5)/16. - Bruno Berselli, Jan 25 2011
a(n)-a(n-2) = A047341(n-1) for n>2. - Bruno Berselli, Jan 25 2011
Sum_{n>=2} 1/a(n) = 14 - 2*cot(Pi/7)*Pi. - Amiram Eldar, Mar 17 2022