cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A175233 Numbers n with property that n and 4*n^2 + 163 are terms in A057605.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 14, 16, 19, 24, 27, 28, 29, 33, 39, 45, 49, 58, 64, 69, 74, 80, 81, 82, 89, 97, 104, 110, 113, 114, 121, 127, 128, 132, 141, 150, 154, 160, 165, 169, 171, 180, 193, 197, 208, 212, 217, 220, 222, 227, 232, 233, 244, 253, 264, 269, 275
Offset: 1

Views

Author

Zak Seidov, Mar 09 2010

Keywords

Comments

Numbers n with property that both m=4*n^2 + 163 and p=4*m^2 + 163 are primes.

Crossrefs

Intersection of A057604 and A057605.

Programs

  • Mathematica
    mpQ[n_]:=Module[{m=4n^2+163},And@@PrimeQ[{m,4m^2+163}]]; Select[Range[300], mpQ] (* Harvey P. Dale, Jul 15 2013 *)

Formula

n = 2: m = 4*n^2 + 163 = 179 and p = 4*m^2 + 163 = 128327 are primes.

Extensions

Edited by Zak Seidov, Mar 17 2010

A059962 Duplicate of A057605.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 24, 25, 27, 28, 29
Offset: 1

Views

Author

Keywords

A057604 Primes of the form 4*k^2 + 163.

Original entry on oeis.org

163, 167, 179, 199, 227, 263, 307, 359, 419, 487, 563, 647, 739, 839, 947, 1063, 1187, 1319, 1459, 1607, 2099, 2467, 2663, 3079, 3299, 3527, 4007, 4259, 4519, 4787, 5347, 5639, 5939, 6247, 6563, 7219, 7559, 7907, 8263, 8627, 8999, 9767, 10163, 10567, 10979, 11399, 11827, 12263
Offset: 1

Views

Author

Tito Piezas III, Oct 08 2000

Keywords

Comments

These numbers are not prime in O_Q(sqrt(-163)). If p = n^2 + 163, then (n - sqrt(-163))*(n + sqrt(-163)) = p. - Alonso del Arte, Dec 18 2017

Crossrefs

Programs

  • Magma
    [a: n in [0..400] | IsPrime(a) where a is 4*n^2 + 163] // Vincenzo Librandi, Aug 07 2010
    
  • Mathematica
    Select[Table[4n^2 + 163, {n, 0, 70}], PrimeQ] (* Vincenzo Librandi, Jul 15 2012 *)
  • PARI
    lista(nn) = for(n=0, nn, my(p = 4*n^2 + 163); if(isprime(p), print1(p, ", "))) \\ Iain Fox, Dec 19 2017

Extensions

Sequence corrected by Vincenzo Librandi, Jul 15 2012
Showing 1-3 of 3 results.