cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A057651 a(n) = (3*5^n - 1)/2.

Original entry on oeis.org

1, 7, 37, 187, 937, 4687, 23437, 117187, 585937, 2929687, 14648437, 73242187, 366210937, 1831054687, 9155273437, 45776367187, 228881835937, 1144409179687, 5722045898437, 28610229492187, 143051147460937, 715255737304687, 3576278686523437, 17881393432617187, 89406967163085937
Offset: 0

Views

Author

N. J. A. Sloane, Oct 13 2000

Keywords

Comments

Sum of n-th row of triangle of powers of 5: 1; 1 5 1; 1 5 25 5 1 ; 1 5 25 125 25 5 1; ... - Philippe Deléham, Feb 23 2014

Examples

			a(0) = 1;
a(1) = 1 + 5 + 1 = 7;
a(2) = 1 + 5 + 25 + 5 + 1 = 37;
a(3) = 1 + 5 + 25 + 125 + 25 + 5 + 1 = 187; etc. - _Philippe Deléham_, Feb 23 2014
G.f. = 1 + 7*x + 37*x^2 + 187*x^3 + 937*x^4 + 4687*x^5 + 23437*x^6 + ...
		

Crossrefs

Programs

Formula

G.f.: (1+x)/(1 - 6*x + 5*x^2).
a(0)=1, a(n) = 5*a(n-1) + 2; a(n) = a(n-1) + 6*(5^(n-1)). - Amarnath Murthy, May 27 2001
a(n) = 6*a(n-1) - 5*a(n-2), n > 1. - Vincenzo Librandi, Oct 30 2011
a(n) = Sum_{k=0..n} A112468(n,k)*6^k. - Philippe Deléham, Feb 23 2014
From Elmo R. Oliveira, Mar 29 2025: (Start)
E.g.f.: exp(x)*(3*exp(4*x) - 1)/2.
a(n) = A097162(2*n) = A198762(n)/2. (End)