A057651 a(n) = (3*5^n - 1)/2.
1, 7, 37, 187, 937, 4687, 23437, 117187, 585937, 2929687, 14648437, 73242187, 366210937, 1831054687, 9155273437, 45776367187, 228881835937, 1144409179687, 5722045898437, 28610229492187, 143051147460937, 715255737304687, 3576278686523437, 17881393432617187, 89406967163085937
Offset: 0
Examples
a(0) = 1; a(1) = 1 + 5 + 1 = 7; a(2) = 1 + 5 + 25 + 5 + 1 = 37; a(3) = 1 + 5 + 25 + 125 + 25 + 5 + 1 = 187; etc. - _Philippe Deléham_, Feb 23 2014 G.f. = 1 + 7*x + 37*x^2 + 187*x^3 + 937*x^4 + 4687*x^5 + 23437*x^6 + ...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-5).
Programs
-
Magma
[(3*5^n-1)/2: n in [0..30]]; // Vincenzo Librandi, Oct 30 2011
-
Maple
G.f=(1+x)/(1-5*x)/(1-x): gser:=series(g, x=0, 43): seq(coeff(gser, x, n), n=0..30); # Zerinvary Lajos, Jan 11 2009
-
Mathematica
Table[(3*5^n-1)/2,{n,0,30}] (* Vladimir Joseph Stephan Orlovsky, Jan 29 2012 *)
-
PARI
a(n)=3*5^n\2 \\ Charles R Greathouse IV, Dec 22 2011
Formula
G.f.: (1+x)/(1 - 6*x + 5*x^2).
a(0)=1, a(n) = 5*a(n-1) + 2; a(n) = a(n-1) + 6*(5^(n-1)). - Amarnath Murthy, May 27 2001
a(n) = 6*a(n-1) - 5*a(n-2), n > 1. - Vincenzo Librandi, Oct 30 2011
a(n) = Sum_{k=0..n} A112468(n,k)*6^k. - Philippe Deléham, Feb 23 2014
From Elmo R. Oliveira, Mar 29 2025: (Start)
E.g.f.: exp(x)*(3*exp(4*x) - 1)/2.
Comments