A057683 Numbers k such that k^2 + k + 1, k^3 + k + 1 and k^4 + k + 1 are all prime.
1, 2, 5, 6, 12, 69, 77, 131, 162, 426, 701, 792, 1221, 1494, 1644, 1665, 2129, 2429, 2696, 3459, 3557, 3771, 4350, 4367, 5250, 5670, 6627, 7059, 7514, 7929, 8064, 9177, 9689, 10307, 10431, 11424, 13296, 13299, 13545, 14154, 14286, 14306, 15137
Offset: 1
Examples
5 is included because 5^2 + 5 + 1 = 31, 5^3 + 5 + 1 = 131 and 5^4 + 5 + 1 = 631 are all prime.
Links
- Reinhard Zumkeller and Robert Israel, Table of n, a(n) for n = 1..10000 (n = 1..100 from Reinhard Zumkeller).
Programs
-
Haskell
a057683 n = a057683_list !! (n-1) a057683_list = filter (all (== 1) . p) [1..] where p x = map (a010051 . (+ (x + 1)) . (x ^)) [2..4] -- Reinhard Zumkeller, Nov 12 2012
-
Magma
[n: n in [0..20000]|IsPrime(n^2+n+1) and IsPrime(n^3+n+1) and IsPrime(n^4+n+1)] // Vincenzo Librandi, Dec 20 2010
-
Maple
select(n -> isprime(n^4+n+1) and isprime(n^3+n+1) and isprime(n^2+n+1), [$1..50000]); # Robert Israel, Jul 31 2016
-
Mathematica
Select[Range[16000],And@@PrimeQ/@(Table[n^i+n+1,{i,2,4}]/.n->#)&] (* Harvey P. Dale, Mar 28 2011 *)
-
Python
from sympy import isprime A057683_list = [n for n in range(10**5) if isprime(n**2+n+1) and isprime(n**3+n+1) and isprime(n**4+n+1)] # Chai Wah Wu, Apr 02 2021
Comments