cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A057773 a(n) = Sum_{i=1..n} nu_2(prime(i) - 1) where nu_2(m) = exponent of highest power of 2 dividing m.

Original entry on oeis.org

0, 1, 3, 4, 5, 7, 11, 12, 13, 15, 16, 18, 21, 22, 23, 25, 26, 28, 29, 30, 33, 34, 35, 38, 43, 45, 46, 47, 49, 53, 54, 55, 58, 59, 61, 62, 64, 65, 66, 68, 69, 71, 72, 78, 80, 81, 82, 83, 84, 86, 89, 90, 94, 95, 103, 104, 106, 107, 109, 112, 113, 115, 116, 117, 120, 122, 123
Offset: 1

Views

Author

Labos Elemer, Nov 02 2000

Keywords

Comments

Exponent of highest power of 2 dividing Euler phi of primorials.
Conjecture: a(n) ~ 2n. - Charles R Greathouse IV, Jun 02 2015
The conjecture is true. See the comment in A023506 about the asymptotic distribution of nu_2(prime(i) - 1). - Amiram Eldar, Mar 14 2025

Examples

			For n = 6, the 6th primorial is 30030, phi(30030) = 5760 = 2^7 * 3^2 * 5, so a(6) = 7.
		

Crossrefs

Partial sums of A023506.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, 0,
          a(n-1)+padic[ordp](ithprime(n)-1, 2))
        end:
    seq(a(n), n=1..80);  # Alois P. Heinz, Jan 01 2023
  • Mathematica
    Table[IntegerExponent[EulerPhi[Product[Prime[i], {i, n}]], 2], {n, 110}] (* Jamie Morken, Oct 13 2023 *)
  • PARI
    a(n) = sum(k=1,n, valuation(prime(k)-1, 2)); \\ Michel Marcus, May 30 2015
    
  • PARI
    a(n) = valuation(eulerphi(prod(k=1,n, prime(k))), 2); \\ Michel Marcus, May 30 2015
    
  • PARI
    first(n)=my(p=primes(n),s); vector(#p,i,s+=valuation(p[i]-1,2)) \\ Charles R Greathouse IV, Jun 02 2015

Formula

a(n) = A007814(A000010(A002110(n))).