cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A005867 a(0) = 1; for n > 0, a(n) = (prime(n)-1)*a(n-1).

Original entry on oeis.org

1, 1, 2, 8, 48, 480, 5760, 92160, 1658880, 36495360, 1021870080, 30656102400, 1103619686400, 44144787456000, 1854081073152000, 85287729364992000, 4434961926979584000, 257227791764815872000, 15433667505888952320000
Offset: 0

Views

Author

Keywords

Comments

Local minima of Euler's phi function. - Walter Nissen
Number of potential primes in a modulus primorial(n+1) sieve. - Robert G. Wilson v, Nov 20 2000
Let p=prime(n) and let p# be the primorial (A002110), then it can be shown that any p# consecutive numbers have exactly a(n-1) numbers whose lowest prime factor is p. For a proof, see the "Proofs Regarding Primorial Patterns" link. For example, if we let p=7 and consider the interval [101,310] containing 210 numbers, we find the 8 numbers 119, 133, 161, 203, 217, 259, 287, 301. - Dennis Martin (dennis.martin(AT)dptechnology.com), Jul 16 2006
From Gary W. Adamson, Apr 21 2009: (Start)
Equals (-1)^n * (1, 1, 1, 2, 8, 48, ...) dot (-1, 2, -3, 5, -7, 11, ...).
a(6) = 480 = (1, 1, 1, 2, 8, 48) dot (-1, 2, -3, 5, -7, 11) = (-1, 2, -3, 10, -56, 528). (End)
It can be proved that there are at least T prime numbers less than N, where the recursive function T is: T = N - N*Sum_{i=0..T(sqrt(N))} A005867(i)/A002110(i). This can show for example that at least 0.16*N numbers are primes less than N for 29^2 > N > 23^2. - Ben Paul Thurston, Aug 23 2010
First column of A096294. - Eric Desbiaux, Jun 20 2013
Conjecture: The g.f. for the prime(n+1)-rough numbers (A000027, A005408, A007310, A007775, A008364, A008365, A008366, A166061, A166063) is x*P(x)/(1-x-x^a(n)+x^(a(n)+1)), where P(x) is an order a(n) polynomial with symmetric coefficients (i.e., c(0)=c(n), c(1)=c(n-1), ...). - Benedict W. J. Irwin, Mar 18 2016
a(n)/A002110(n+1) (primorial(n+1)) is the ratio of natural numbers whose smallest prime factor is prime(n+1); i.e., prime(n+1) coprime to A002110(n). So the ratio of even numbers to natural numbers = 1/2; odd multiples of 3 = 1/6; multiples of 5 coprime to 6 (A084967) = 2/30 = 1/15; multiples of 7 coprime to 30 (A084968) = 8/210 = 4/105; etc. - Bob Selcoe, Aug 11 2016
The 2-adic valuation of a(n) is A057773(n), being sum of the 2-adic valuations of the product terms here. - Kevin Ryde, Jan 03 2023
For n > 1, a(n) is the number of prime(n+1)-rough numbers in [1, primorial(prime(n))]. - Alexandre Herrera, Aug 29 2023

Examples

			a(3): the mod 30 prime remainder set sieve representation yields the remainder set: {1, 7, 11, 13, 17, 19, 23, 29}, 8 elements.
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A057773 (2-adic valuation).
Column 1 of A281890.

Programs

  • Haskell
    a005867 n = a005867_list !! n
    a005867_list = scanl (*) 1 a006093_list
    -- Reinhard Zumkeller, May 01 2013
  • Maple
    A005867 := proc(n)
        mul(ithprime(j)-1,j=1..n) ;
    end proc: # Zerinvary Lajos, Aug 24 2008, R. J. Mathar, May 03 2017
  • Mathematica
    Table[ Product[ EulerPhi[ Prime[ j ] ], {j, 1, n} ], {n, 1, 20} ]
    RecurrenceTable[{a[0]==1,a[n]==(Prime[n]-1)a[n-1]},a,{n,20}] (* Harvey P. Dale, Dec 09 2013 *)
    EulerPhi@ FoldList[Times, 1, Prime@ Range@ 18] (* Michael De Vlieger, Mar 18 2016 *)
  • PARI
    for(n=0, 22, print1(prod(k=1,n, prime(k)-1), ", "))
    

Formula

a(n) = phi(product of first n primes) = A000010(A002110(n)).
a(n) = Product_{k=1..n} (prime(k)-1) = Product_{k=1..n} A006093(n).
Sum_{n>=0} a(n)/A002110(n+1) = 1. - Bob Selcoe, Jan 09 2015
a(n) = A002110(n)-((1/A000040(n+1) - A038110(n+1)/A038111(n+1))*A002110(n+1)). - Jamie Morken, Mar 27 2019
a(n) = |Sum_{k=0..n} A070918(n,k)|. - Alois P. Heinz, Aug 18 2019
a(n) = A058251(n)/A060753(n+1). - Jamie Morken, Apr 25 2022
a(n) = A002110(n) - A016035(A002110(n)) - 1 for n >= 1. - David James Sycamore, Sep 07 2024
Sum_{n>=0} 1/a(n) = A345974. - Amiram Eldar, Jun 26 2025

Extensions

Offset changed to 0, Name changed, and Comments and Examples sections edited by T. D. Noe, Apr 04 2010

A023506 Exponent of 2 in prime factorization of prime(n) - 1.

Original entry on oeis.org

0, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 2, 3, 1, 1, 2, 1, 2, 1, 1, 3, 1, 1, 3, 5, 2, 1, 1, 2, 4, 1, 1, 3, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 6, 2, 1, 1, 1, 1, 2, 3, 1, 4, 1, 8, 1, 2, 1, 2, 3, 1, 2, 1, 1, 3, 2, 1, 4, 1, 2, 5, 1, 1, 2, 1, 1, 2, 2, 4, 3, 1, 2, 1, 4, 1, 1, 6, 3, 2, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 2, 1, 2, 1, 3, 1
Offset: 1

Views

Author

Keywords

Comments

Also the number of steps to reach an integer starting with prime(n)/2 and iterating the map x->x*ceiling(x). - Benoit Cloitre, Sep 06 2002
Also exponent of 2 in -1 + prime(n)^s for odd exponents s because (-1 + prime(n)^s)/(prime(n) - 1) is odd. - Labos Elemer, Jan 20 2004
First occurrence of 0,1,2,3,4,...: 1, 2, 3, 13, 7, 25, 44, 116, 55, 974, 1581, 2111, 1470, 4289, 10847, 15000, 6543, 91466, 62947, 397907, 498178, ..., for primes 2, 3, 5, 41, 17, 97, 193, 641, 257, 7681, 13313, 18433, 12289, 40961, 114689, 163841, 65537, 1179649, 786433, 5767169, 7340033, .... - Robert G. Wilson v, May 28 2009
By Dirichlet's theorem on arithmetic progressions, the asymptotic density of primes p such that p == 1 (mod 2^k) within all the primes is 1/2^(k-1), for k >= 1. This is also the asymptotic density of terms in this sequence that are >= k. Therefore, the asymptotic density of the occurrences of k in this sequence is d(k) = 1/2^(k-1) - 1/2^k = 1/2^k, and the asymptotic mean of this sequence is Sum_{k>=1} k*d(k) = 2. - Amiram Eldar, Mar 14 2025

Examples

			For n = 25, prime(25) = 97, A006093(25) = 96 = 2*2*2*2*2*3, so a(25) = 5.
		

Crossrefs

Subsequence of A001511 (except 1st term).

Programs

  • Magma
    [Valuation(NthPrime(n)-1, 2): n in [1..110]]; // Bruno Berselli, Aug 05 2013
    
  • Maple
    A023506:= x -> padic[ordp](ithprime(x)-1,2):
    seq(A023506(x),x=1..1000); # Robert Israel, May 06 2014
  • Mathematica
    f[n_] := Block[{fi = First@ FactorInteger[ Prime@n - 1]}, If[ fi[[1]] == 2, fi[[2]], 0]]; Array[f, 105] (* Robert G. Wilson v, May 28 2009 *)
    Table[IntegerExponent[Prime[n] - 1, 2], {n, 110}] (* Bruno Berselli, Aug 05 2013 *)
  • PARI
    A023506(n) = {local(m,r);r=0;m=prime(n)-1;while(m%2==0,m=m/2;r++);r} \\ Michael B. Porter, Jan 26 2010
    
  • PARI
    forprime(p=2, 700, print1(valuation(p-1,2),", ")); \\ Bruno Berselli, Aug 05 2013
    
  • Python
    from sympy import prime
    def A023506(n): return (~(m:=prime(n)-1)& m-1).bit_length() # Chai Wah Wu, Jul 07 2022

Formula

A057776 a(n) is the least number k such that prime(k) - 1 is divisible by 2^(n-1) and the quotient is odd.

Original entry on oeis.org

1, 2, 3, 13, 7, 25, 44, 116, 55, 974, 1581, 2111, 1470, 4289, 10847, 15000, 6543, 91466, 62947, 397907, 498178, 1452314, 6025010, 20197904, 38946356, 9385401, 24843812, 98842359, 166808880, 556542914, 154570517, 3132108468, 7417604438, 3217817383, 47999122016
Offset: 1

Views

Author

Labos Elemer, Nov 02 2000

Keywords

Examples

			For n = 1, a(1) = 1, prime(a(1)) = prime(1) = 2 and prime(1)-1 = 1 is divisible by 2^(n-1) = 2^0 = 1; moreover 2 is the smallest.
For n = 10, a(10) = 974, the 974th prime is 7681, prime(974) - 1 = 7680 = 512*15, is divisible by 2^9 = 512 and the quotient is 15, and there are no other primes such this below 7681.
A057775(30) = 12348030977; a(30) = 556542914. It means that 12348030977 is the 556542914th prime. A057777(30) = 12348030976; when A057777(30) is divided by 2^29, the quotient is 23 = A057778(30).
		

Crossrefs

Formula

a(n) = PrimePi(A057775(n-1)). - Amiram Eldar, Mar 16 2025

Extensions

a(32)-a(35) from Amiram Eldar, Mar 16 2025
Showing 1-3 of 3 results.