A057813 a(n) = (2*n+1)*(4*n^2+4*n+3)/3.
1, 11, 45, 119, 249, 451, 741, 1135, 1649, 2299, 3101, 4071, 5225, 6579, 8149, 9951, 12001, 14315, 16909, 19799, 23001, 26531, 30405, 34639, 39249, 44251, 49661, 55495, 61769, 68499, 75701, 83391, 91585, 100299, 109549, 119351, 129721, 140675, 152229, 164399
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (10).
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Magma
[(2*n+1)*(4*n^2+4*n+3)/3 : n in [0..50]] // Wesley Ivan Hurt, Apr 22 2014
-
Maple
A057813:=n->(2*n + 1)*(4*n^2 + 4*n + 3)/3; seq(A057813(n), n=0..50); # Wesley Ivan Hurt, Apr 06 2014
-
Mathematica
Table[(2*n + 1)*(4*n^2 + 4*n + 3)/3, {n, 0, 50}] (* David Nacin, Mar 01 2012 *)
-
PARI
P(x, y, z) = x^3 + x^2*y + x^2*z + x*y^2 + x*y*z + x*z^2 + y^3 + y^2*z + y*z^2 + z^3; a(n) = P(2*n-1, 2*n+1, 2*n+3)/30; \\ Michel Marcus, Apr 22 2014
Formula
a(n) = 2*A050533(n) + 1. - N. J. A. Sloane, Sep 22 2004
G.f.: (1+7*x+7*x^2+x^3)/(1-x)^4. - Colin Barker, Mar 01 2012
G.f. for sequence with interpolated zeros: 1/(8*x)*sinh(8*arctanh(x)) = 1/(16*x)*( ((1 + x)/(1 - x))^4 - ((1 - x)/(1 + x))^4 ) = 1 + 11*x^2 + 45*x^4 + 119*x^6 + .... Cf. A019560. - Peter Bala, Apr 07 2017
E.g.f.: (3 + 30*x + 36*x^2 + 8*x^3)*exp(x)/3. - G. C. Greubel, Dec 01 2017
From Peter Bala, Mar 26 2024: (Start)
12*a(n) = (2*n + 1)*(a(n + 1) - a(n - 1)).
Comments