cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A057922 d(n) divides d(n+1), where d(n) is number of positive divisors of n.

Original entry on oeis.org

1, 2, 5, 7, 11, 13, 14, 17, 19, 21, 23, 26, 29, 31, 33, 34, 37, 38, 39, 41, 43, 44, 47, 49, 53, 55, 57, 59, 61, 65, 67, 69, 71, 73, 75, 77, 79, 83, 85, 86, 87, 89, 93, 94, 95, 97, 98, 101, 103, 104, 107, 109, 113, 116, 118, 119, 122, 125, 127, 129, 131, 133, 134, 135
Offset: 0

Views

Author

Leroy Quet, Nov 11 2000

Keywords

Examples

			11 is included because d(11) = 2 divides d(12) = 6.
		

Crossrefs

Programs

A060778 a(n) = gcd(tau(n+1), tau(n)), where tau = A000005.

Original entry on oeis.org

1, 2, 1, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 4, 1, 1, 2, 2, 2, 2, 4, 2, 2, 1, 1, 4, 2, 2, 2, 2, 2, 2, 4, 4, 1, 1, 2, 4, 4, 2, 2, 2, 2, 6, 2, 2, 2, 1, 3, 2, 2, 2, 2, 4, 4, 4, 4, 2, 2, 2, 2, 2, 1, 1, 4, 2, 2, 2, 4, 2, 2, 2, 2, 2, 6, 2, 4, 2, 2, 5, 1, 2, 2, 4, 4, 4, 4, 2, 2, 4, 2, 2, 4, 4, 4, 2, 2, 6, 3, 1, 2, 2, 2, 8, 4
Offset: 1

Views

Author

Labos Elemer, Apr 26 2001

Keywords

Crossrefs

Programs

  • Mathematica
    GCD@@@Partition[DivisorSigma[0,Range[110]],2,1] (* Harvey P. Dale, May 27 2014 *)
  • PARI
    a(n) = gcd(numdiv(n), numdiv(n+1)); \\ Michel Marcus, Jan 12 2018
    
  • Python
    from math import gcd
    from sympy import divisor_count
    def A060778(n): return gcd(divisor_count(n+1),divisor_count(n)) # Chai Wah Wu, Aug 12 2023

Formula

a(n) = gcd(A000005(n+1), A000005(n)).

A060779 a(n) = lcm(tau(n+1), tau(n)), where tau = A000005.

Original entry on oeis.org

2, 2, 6, 6, 4, 4, 4, 12, 12, 4, 6, 6, 4, 4, 20, 10, 6, 6, 6, 12, 4, 4, 8, 24, 12, 4, 12, 6, 8, 8, 6, 12, 4, 4, 36, 18, 4, 4, 8, 8, 8, 8, 6, 6, 12, 4, 10, 30, 6, 12, 12, 6, 8, 8, 8, 8, 4, 4, 12, 12, 4, 12, 42, 28, 8, 8, 6, 12, 8, 8, 12, 12, 4, 12, 6, 12, 8, 8, 10, 10, 20, 4, 12, 12, 4, 4, 8, 8, 12
Offset: 1

Views

Author

Labos Elemer, Apr 26 2001

Keywords

Crossrefs

Programs

  • Mathematica
    LCM@@#&/@Partition[DivisorSigma[0,Range[90]],2,1] (* Harvey P. Dale, Jan 27 2025 *)
  • PARI
    a(n) = { lcm(numdiv(n), numdiv(n+1)) } \\ Harry J. Smith, Jul 11 2009

Formula

a(n) = lcm(A000005(n+1), A000005(n)).
Showing 1-3 of 3 results.