A174292 Spoof-perfect numbers: Freestyle perfect numbers (A058007) which are not perfect numbers (A000396).
60, 84, 90, 120, 336, 840, 924, 1008, 1080, 1260, 1320, 1440, 1680, 1980, 2016, 2160, 2184, 2520, 2772, 3024, 3420, 3600, 3780, 4680, 5040, 5940, 6048, 6552, 7440, 7560, 7800, 8190, 8280, 9240, 9828, 9900, 10080, 10530, 11088, 11400, 13680, 14040, 15120, 16380
Offset: 1
Examples
n = 60 = (3^1)*(4^1)*(5^1), s = 120 = (3^2-1)/(3-1) * (4^2-1)/(4-1) * (5^2-1)/(5-1): s-n = 120-60 = n, so 60 is in the sequence.
References
- R. K. Guy, Unsolved Problems in Number Theory, B1.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..500
- OEIS wiki, Spoof perfect numbers.
- C. Rivera (Ed.), Prime Puzzle 111. Spoof odd Perfect numbers, on primepuzzles.net (before 2000)
- Giovanni Resta, Spoof factorizations of a(1)-a(500)
Programs
-
Mathematica
r[s_, n_, f_] := Catch[If[n==1, s==1, Block[{p,e}, Do[e=1; While[Mod[n, p^e] == 0, r[s*(p^(e+1)-1) / (p-1), n/p^e, p] && Throw@True; e++], {p, Select[Divisors@n, f < # &]}]]; False]]; spoofQ[n_] := r[1/2/n, n, 1] && DivisorSigma[-1, n] != 2; Select[Range[10^4], spoofQ] (* Giovanni Resta, Feb 28 2013 *)
Extensions
a(37)-a(44) from Amiram Eldar, Dec 27 2018
Comments