A058008 Numbers k such that (2*k - 1)!/(k!)^2 is an integer.
1, 6, 15, 28, 42, 45, 66, 77, 91, 110, 126, 140, 153, 156, 170, 187, 190, 204, 209, 210, 220, 228, 231, 238, 266, 276, 299, 308, 312, 315, 322, 325, 330, 345, 378, 414, 420, 429, 435, 440, 442, 450, 459, 460, 468, 476, 483, 493, 496, 510, 527, 551, 558, 561, 570
Offset: 1
Links
- Giovanni Resta, Table of n, a(n) for n = 1..10000
Programs
-
Maple
q:= k-> is(denom((2*k-1)!/(k!)^2)=1): select(q, [$1..600])[]; # Alois P. Heinz, Feb 06 2025
-
Mathematica
Select[Range[500], IntegerQ[(2 # - 1)!/#!^2] &] (* Arkadiusz Wesolowski, Jul 01 2012 *)
Formula
Appears to be A067348(n)/2. - Benoit Cloitre, Mar 21 2003
Terms >1 are given by A002503+1. - Benoit Cloitre, Dec 09 2017
Extensions
Name changed by Arkadiusz Wesolowski, Jul 01 2012
Comments