A058071 A Fibonacci triangle: triangle T(n,k) = Fibonacci(k+1)*Fibonacci(n-k+1), for n >= 0, 0 <= k <= n.
1, 1, 1, 2, 1, 2, 3, 2, 2, 3, 5, 3, 4, 3, 5, 8, 5, 6, 6, 5, 8, 13, 8, 10, 9, 10, 8, 13, 21, 13, 16, 15, 15, 16, 13, 21, 34, 21, 26, 24, 25, 24, 26, 21, 34, 55, 34, 42, 39, 40, 40, 39, 42, 34, 55, 89, 55, 68, 63, 65, 64, 65, 63, 68, 55, 89, 144, 89, 110, 102, 105, 104, 104, 105, 102, 110, 89, 144
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 2, 1, 2; 3, 2, 2, 3; 5, 3, 4, 3, 5; 8, 5, 6, 6, 5, 8; 13, 8, 10, 9, 10, 8, 13; 21, 13, 16, 15, 15, 16, 13, 21; 34, 21, 26, 24, 25, 24, 26, 21, 34; ... As a square array: 1, 1, 2, 3, 5, 8, 13, 21, ... 1, 1, 2, 3, 5, 8, 13, 21, ... 2, 2, 4, 6, 10, 16, 26, ... 3, 3, 6, 9, 15, 24, ... 5, 5, 10, 15, 25, ... 8, 8, 16, 24, ... 13, 13, 26, ... 21, 21, ...
References
- Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8.
- Thomas Koshy, "Fibonacci and Lucas Numbers and Applications", Chap. 15, Hosoya's Triangle, Wiley, New York, 2001.
Links
- Emanuele Munarini and Reinhard Zumkeller, Rows n = 0..120 of table, flattened
- Arthur T. Benjamin and Daniela Elizondo, Counting on Hosoya's Triangle, Fibonacci Quart. 60 (2022), no. 5, 47-55.
- Matthew Blair, Rigoberto Flórez, and Antara Mukherjee, Matrices in the Hosoya triangle, arXiv:1808.05278 [math.CO], 2018.
- Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids, English translation published by Fibonacci Association, Santa Clara Univ., Santa Clara, CA, 1993; see p. 27.
- Hsin-Yun Ching, Rigoberto Flórez, and Antara Mukherjee, Families of Integral Cographs within a Triangular Arrays, arXiv:2009.02770 [math.CO], 2020.
- Cristian Cobeli and Alexandru Zaharescu, Promenade around Pascal Triangle-Number Motives, Bull. Math. Soc. Sci. Math. Roumanie, Tome 56 (104), No. 1 (2013), pp. 73-98. - From _N. J. A. Sloane_, Feb 16 2013
- Rigoberto Flórez, Robinson A. Higuita and Leandro Junes, GCD Property of the Generalized Star of David in the Generalized Hosoya Triangle, J. Int. Seq., Vol. 17 (2014), Article 14.3.6.
- Rigoberto Florez, Robinson A. Higuita, Antara Mukherjee, Star of David and other patterns in the Hosoya-like polynomials triangles, arXiv:1706.04247 [math.CO], 2017.
- Rigoberto Flórez, Robinson A. Higuita, and Antara Mukherjee, The Geometry of some Fibonacci Identities in the Hosoya Triangle, arXiv:1804.02481 [math.NT], 2018.
- Martin Griffiths, Digit Proportions in Zeckendorf Representations, Fibonacci Quart., Vol. 48, No. 2 (2010), pp. 168-174.
- Haruo Hosoya, Fibonacci Triangle, The Fibonacci Quarterly, Vol. 14, No. 2 (1976), pp. 173-178.
- Sandi Klavžar and Iztok Peterin, Edge-counting vectors, Fibonacci cubes and Fibonacci triangle, 2005 preprint of Publ. Math. Debrecen, Vol. 71, No. 3-4 (2007), pp. 267-278.
- Tiberiu V. Trif, Solution to Problem 10706 proposed by J. G. Propp, Amer. Math. Monthly, Vol. 107, No. 9 (Nov. 2000), pp. 866-867.
Crossrefs
Programs
-
Haskell
a058071 n k = a058071_tabl !! n !! k a058071_row n = a058071_tabl !! n a058071_tabl = map (\fs -> zipWith (*) fs $ reverse fs) a104763_tabl -- Reinhard Zumkeller, Aug 15 2013
-
Magma
[Fibonacci(k+1)*Fibonacci(n-k+1): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 06 2022
-
Mathematica
row[n_] := Table[Fibonacci[k]*Fibonacci[n-k+1], {k, 1, n}]; Table[row[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Dec 16 2013 *)
-
PARI
T(n,k)=fibonacci(k)*fibonacci(n+2-k) \\ Charles R Greathouse IV, Feb 07 2017
-
SageMath
flatten([[fibonacci(k+1)*fibonacci(n-k+1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 06 2022
Formula
Row n: F(1)*F(n), F(2)*F(n-1), ..., F(n)*F(1).
G.f.: T(x,y) = 1/((1-x-x^2)(1-xy-x^2y^2)). Recurrence: T(n+4,k+2) = T(n+3,k+2) + T(n+3,k+1) + T(n+2,k+2) - T(n+2,k+1) + T(n+2,k) - T(n+1,k+1) - T(n+1,k) - T(n,k). - Emanuele Munarini, Apr 01 2008
Column k is the (generalized) Fibonacci sequence having first two terms F(k+1), F(k+1). - Clark Kimberling, Dec 21 2015
From G. C. Greubel, Apr 06 2022: (Start)
T(n,k) = Fibonacci(k+1)*Fibonacci(n-k+1).
Sum_{k=0..n} T(n, k) = A001629(n+2).
Sum_{k=0..floor(n/2)} T(n, k) = A024458(n+1).
Sum_{k=1..n-1} T(n, k) = A004798(n-1), n >= 2.
Sum_{k=0..floor(n/2)} T(n-k, k) = A250111(n+2).
T(n, 0) = A000045(n+1).
T(2*n, n) = A007598(n+1).
T(2*n+1, n) = A001654(n+1).
T(n, n-k) = T(n, k). (End)
Extensions
More terms from James Sellers, Nov 27 2000
Edited by N. J. A. Sloane, Sep 15 2008 at the suggestion of R. J. Mathar
Name edited by G. C. Greubel, Apr 06 2022
Comments