cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A001426 Number of commutative semigroups of order n.

Original entry on oeis.org

1, 1, 3, 12, 58, 325, 2143, 17291, 221805, 11545843, 3518930337
Offset: 0

Views

Author

Keywords

References

  • P. A. Grillet, Computing Finite Commutative Semigroups, Semigroup Forum 53 (1996), 140-154.
  • P. A. Grillet, Computing Finite Commutative Semigroups: Part II, Semigroup Forum 67 (2003), 159-184.
  • R. J. Plemmons, There are 15973 semigroups of order 6, Math. Algor., 2 (1967), 2-17; 3 (1968), 23.
  • R. J. Plemmons, Cayley Tables for All Semigroups of Order Less Than 7. Department of Mathematics, Auburn Univ., 1965.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) + A079193(n) + A079196(n) + A079199(n) = A001329(n).

Extensions

a(8) (from the Satoh et al. paper) supplied by Richard C. Schroeppel, Jul 22 2005
a(9) and a(10) from Grillet references sent by Jens Zumbragel (jzumbr(AT)math.unizh.ch), Jun 14 2006

A079201 Number of isomorphism classes of associative commutative closed binary operations on a set of order n, listed by class size.

Original entry on oeis.org

1, 1, 0, 3, 0, 0, 3, 9, 0, 0, 0, 3, 0, 0, 16, 39, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 15, 0, 4, 0, 103, 201, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 6, 0, 0, 4, 91, 0, 55, 0, 715, 1258, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12
Offset: 0

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Comments

Number of elements per row: 1,1,2,4,8,16,30,... (given by A027423, number of positive divisors of n!).

Examples

			Triangle T(n,k) begins:
  1;
  1;
  0, 3;
  0, 0, 3, 9;
  0, 0, 0, 3, 0, 0, 16, 39;
  0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 15, 0, 4, 0, 103, 201;
		

Crossrefs

Row sums are A001426.

Formula

A079194(n,k) + A079197(n,k) + A079200(n,k) + T(n,k) = A079171(n,k).
T(n, A027423(n)) = A058105(n).
A023815(n) = Sum_{k>=1} T(n,k)*A079210(n,k).

Extensions

a(0)=1 prepended and terms a(16) and beyond from Andrew Howroyd, Jan 26 2022

A058168 Triangle: Number of asymmetric commutative semigroups of order n with k idempotents.

Original entry on oeis.org

1, 2, 1, 3, 5, 1, 7, 18, 12, 2, 24, 65, 73, 34, 5, 133, 276, 399, 309, 123, 18, 1722, 1595, 2240, 2331, 1500, 544, 81
Offset: 1

Views

Author

Christian G. Bower, Nov 19 2000

Keywords

Examples

			1; 2,1; 3,5,1; 7,18,12,2; 24,65,73,34,5; ...
		

Crossrefs

Row sums give A058105.

A118100 Number of commutative semigroups of order <= n.

Original entry on oeis.org

1, 2, 5, 17, 75, 400, 2543, 19834, 241639, 11787482, 3530717819
Offset: 0

Views

Author

Jonathan Vos Post, May 11 2006

Keywords

Comments

A001426(n) is the number of commutative semigroups of order n. A001426(n) + A079193(n) + A079196(n) + A079199(n) = A001329(n). 2, 5, 17, 2543 and 241639 are primes.

Examples

			a(8) = 1 + 1 + 3 + 12 + 58 + 325 + 2143 + 17291 + 221805 = 241639.
		

Crossrefs

Formula

a(n) = Sum_{i=1..n} A001426(i).

Extensions

a(9)-a(10) added using the terms in A001426 by Miles Englezou, May 27 2025
Showing 1-4 of 4 results.