cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A058159 Triangle read by rows: T(n,k) is the number of labeled commutative monoids of order n with k idempotents.

Original entry on oeis.org

1, 2, 2, 3, 18, 6, 16, 180, 144, 36, 30, 2040, 3240, 1740, 380, 360, 43170, 81000, 70740, 31680, 6390, 840, 1400112, 2589510, 2976960, 2055480, 832230, 157962, 15360, 110488616, 117733728, 144285960, 130781280, 79626120, 30004128, 5396888, 68040, 30647444544, 9223088112, 8744866704, 8997002280, 7154708400, 4005012816, 1421659512, 243179064
Offset: 1

Views

Author

Christian G. Bower, Nov 14 2000

Keywords

Examples

			Triangle begins:
    1;
    2,     2;
    3,    18,     6;
   16,   180,   144,    36;
   30,  2040,  3240,  1740,   380;
  360, 43170, 81000, 70740, 31680, 6390;
  ...
		

Crossrefs

Row sums give A058155.
Column 1: A034382.
Main diagonal: A055512.
Cf. A058142 (isomorphism classes), A058157, A058160.

Formula

T(n, k) = A058160(n, k)*n.

Extensions

Terms a(30) and beyond from Andrew Howroyd, Feb 15 2022

A034383 Number of labeled groups.

Original entry on oeis.org

1, 2, 3, 16, 30, 480, 840, 22080, 68040, 1088640, 3991680, 259459200, 518918400, 16605388800, 163459296000, 10353459916800, 22230464256000, 1867358997504000, 6758061133824000, 648773868847104000, 5474029518397440000, 122618261212102656000
Offset: 1

Views

Author

Keywords

Comments

From Jianing Song, Mar 02 2024: (Start)
In other words, number of ways to define a group structure on a set of n elements. Note that for a group G, a group structure on the set G is given by mapping (x,y) to sigma^(-1)(sigma(x)*sigma(y)), where sigma is a bijection on the set G; sigma and sigma' give the same structure if and only if sigma' is the composition of a group automorphism of G and sigma.
By definition, a(n) = A034381(n) if n in A003277, otherwise a(n) > A034381(n). The indices of records of a(n)/A034381(n) among the known terms are 1, 4, 8, 16, 24, 32, 48, 64, 96, 128, 192, with a(192)/A034381(192) = 122774329/1640520 ~ 74.8.
Also by definition, a(n) >= A000001(n)*n!/A059773(n). If the conjecture A059773(2^r) = A002884(r) is true, then A059773(2^r) <= 2^(r^2), while A000001(2^r) >= 2^((2/27)*r^2*(r-6)) (see the Math Stack Exchange link below), so a(2^r)/A034381(2^r) tends to infinity quickly as r tends to infinity.
The sequence is strictly increasing for the first 256 terms (a(256) > A034381(256) > A034381(255) = a(255) since 255 is in A003277). On the other hand, assuming that A059773(2^r) = A002884(r), then a(2^20)/(2^20)! >= A000001(2^20)/A002884(20) > 99798.4, while a(2^20+1)/(2^20)! = A034381(2^20+1)/(2^20)! = (2^20+1)/phi(2^20+1) since 2^20+1 = 17*61681 is in A003277, so we would have a(2^20) > a(2^20+1). It is conjectured a(2^r) > a(2^r+1) for all sufficiently large r. (End)

Crossrefs

Programs

  • GAP
    A034383 := function(n) local fn, sum, k; fn := Factorial(n); sum := 0; for k in [1 .. NrSmallGroups(n)] do sum := sum + fn / Size(AutomorphismGroup(SmallGroup(n,k))); od; return sum; end; # Stephen A. Silver, Feb 10 2013

Formula

a(n) = n * A058163(n).
a(n) = Sum n!/|Aut(G)|, where the sum is taken over the different products G of cyclic groups with |G| = n.

Extensions

More terms from Stephen A. Silver, Feb 10 2013

A058158 Triangle read by rows: T(n,k) is the number of labeled monoids of order n with k idempotents and a fixed identity.

Original entry on oeis.org

1, 1, 1, 1, 6, 4, 4, 45, 72, 35, 6, 528, 1308, 1676, 604, 80, 19935, 39700, 70170, 62060, 16727, 120, 3599436, 1969470, 3829000, 5167800, 3260382, 681232, 2760, 6085914205, 281840664, 294812385, 481221020, 482447637, 228315640, 38187291
Offset: 1

Views

Author

Christian G. Bower, Nov 14 2000

Keywords

Examples

			Triangle begins:
   1;
   1,     1;
   1,     6,     4;
   4,    45,    72,    35;
   6,   528,  1308,  1676,   604;
  80, 19935, 39700, 70170, 62060, 16727;
  ...
		

Crossrefs

Row sums give A058154.
Column 1: A058163.
Main diagonal is A351730(n-1).
Cf. A058137 (isomorphism classes), A058157, A058160 (commutative), A058166.

Formula

T(n,k) = A058157(n,k)/n.

Extensions

a(30)-a(36) from Andrew Howroyd, Feb 15 2022

A351731 Number of labeled idempotent monoids of order n.

Original entry on oeis.org

1, 2, 12, 140, 3020, 100362, 4768624, 305498328, 25293331098, 2619996058190
Offset: 1

Views

Author

Andrew Howroyd, Feb 17 2022

Keywords

Crossrefs

Main diagonal of A058157.

Formula

a(n) = n * A351731(n-1).
Showing 1-4 of 4 results.