cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A034382 Number of labeled Abelian groups of order n.

Original entry on oeis.org

1, 2, 3, 16, 30, 360, 840, 15360, 68040, 907200, 3991680, 159667200, 518918400, 14529715200, 163459296000, 4250979532800, 22230464256000, 1200445069824000, 6758061133824000, 405483668029440000
Offset: 1

Views

Author

Keywords

Crossrefs

Formula

a(n) = A058162(n) * n.
a(n) = Sum n!/|Aut(G)|, where the sum is taken over the different products G of cyclic groups with |G|=n. Formula for |Aut(G)| is given by Hillar and Rhea (2007). Another formula is given by Sugarknri (2019).

Extensions

a(16) corrected by Max Alekseyev, Sep 12 2019

A058163 Number of labeled groups with a fixed identity.

Original entry on oeis.org

1, 1, 1, 4, 6, 80, 120, 2760, 7560, 108864, 362880, 21621600, 39916800, 1186099200, 10897286400, 647091244800, 1307674368000, 103742166528000, 355687428096000, 32438693442355200, 260668072304640000, 5573557327822848000, 51090942171709440000
Offset: 1

Views

Author

Christian G. Bower, Nov 15 2000

Keywords

Crossrefs

Programs

  • GAP
    A058163 := function(n) local fn1, sum, k; fn1 := Factorial(n-1); sum := 0; for k in [1 .. NrSmallGroups(n)] do sum := sum + fn1 / Size(AutomorphismGroup(SmallGroup(n,k))); od; return sum; end; # Stephen A. Silver, Feb 10 2013

Formula

a(n) = A034383(n)/n.

Extensions

More terms from Stephen A. Silver, Feb 10 2013

A034381 Number of labeled cyclic groups with n elements.

Original entry on oeis.org

1, 2, 3, 12, 30, 360, 840, 10080, 60480, 907200, 3991680, 119750400, 518918400, 14529715200, 163459296000, 2615348736000, 22230464256000, 1067062284288000, 6758061133824000, 304112751022080000, 4257578514309120000, 112400072777760768000, 1175091669949317120000
Offset: 1

Views

Author

Keywords

Comments

This sequence is strictly increasing, since a(n) = n!/phi(n) > n!/n = (n-1)! >= a(n-1) for n >= 2. - Jianing Song, Mar 02 2024

Crossrefs

Programs

Formula

a(n) = n!/phi(n).
a(n) = A000142(n)/A000010(n) = n*A058161(n).

Extensions

a(21) onwards from Jianing Song, Mar 02 2024

A058157 Triangle read by rows: T(n,k) is the number of labeled monoids of order n with k idempotents.

Original entry on oeis.org

1, 2, 2, 3, 18, 12, 16, 180, 288, 140, 30, 2640, 6540, 8380, 3020, 480, 119610, 238200, 421020, 372360, 100362, 840, 25196052, 13786290, 26803000, 36174600, 22822674, 4768624, 22080, 48687313640, 2254725312, 2358499080, 3849768160, 3859581096, 1826525120, 305498328
Offset: 1

Views

Author

Christian G. Bower, Nov 14 2000

Keywords

Examples

			Triangle begins:
   1;
   2,    2;
   3,   18,   12;
  16,  180,  288,  140;
  30, 2640, 6540, 8380, 3020;
  ...
		

Crossrefs

Row sums give A058153.
Column 1: A034383.
Main diagonal is A351731.
Cf. A058137 (isomorphism classes), A058158, A058159 (commutative), A058166.

Formula

T(n,k) = A058158(n,k)*n.

Extensions

a(30)-a(36) from Andrew Howroyd, Feb 15 2022
Showing 1-4 of 4 results.