A058162
Number of labeled Abelian groups with a fixed identity.
Original entry on oeis.org
1, 1, 1, 4, 6, 60, 120, 1920, 7560, 90720, 362880, 13305600, 39916800, 1037836800, 10897286400, 265686220800, 1307674368000, 66691392768000, 355687428096000, 20274183401472000, 202741834014720000
Offset: 1
The 2 unlabeled Abelian groups of order 4 are C4 and C2^2. The 4 labeled Abelian groups whose identity is "0" consist of 3 of type C4 (where the nongenerator can be "2", "3", or "4") and 1 of type C2^2.
A058161
Number of labeled cyclic groups with a fixed identity.
Original entry on oeis.org
1, 1, 1, 3, 6, 60, 120, 1260, 6720, 90720, 362880, 9979200, 39916800, 1037836800, 10897286400, 163459296000, 1307674368000, 59281238016000, 355687428096000, 15205637551104000, 202741834014720000, 5109094217170944000, 51090942171709440000
Offset: 1
a(4)=3 because we have: <(1234)> = <(1432)>, <(1243)> = <(1342)>, <(1324)> = <(1423)>. - _Geoffrey Critzer_, Sep 07 2015
- J. L. Lagrange, Oeuvres, Vol. III Paris 1869.
-
Table[n!/(n EulerPhi[n]), {n, 1, 20}] (* Artur Jasinski, Jan 22 2008 *)
A034383
Number of labeled groups.
Original entry on oeis.org
1, 2, 3, 16, 30, 480, 840, 22080, 68040, 1088640, 3991680, 259459200, 518918400, 16605388800, 163459296000, 10353459916800, 22230464256000, 1867358997504000, 6758061133824000, 648773868847104000, 5474029518397440000, 122618261212102656000
Offset: 1
-
A034383 := function(n) local fn, sum, k; fn := Factorial(n); sum := 0; for k in [1 .. NrSmallGroups(n)] do sum := sum + fn / Size(AutomorphismGroup(SmallGroup(n,k))); od; return sum; end; # Stephen A. Silver, Feb 10 2013
A123234
Number of n X n Latin squares up to row and column permutation (or "RC-equivalence").
Original entry on oeis.org
1, 1, 1, 4, 16, 1868, 2420400, 66915816462
Offset: 1
01234 => 20413 => 01234
13042 => 01234 => 14320
24310 => 32041 => 20413
30421 => 43102 => 32041
42103 => 14320 => 43102
The first square is transformed by permuting columns; the 2nd square is transformed by permuting rows.
Both the first and 3rd square are in reduced form, so are considered equivalent by row/col permutation.
- Dan R. Eilers, Phil A. Sallee, The number of Latin squares up to row and column permutation, Poster Session, Harvey Mudd College Mathematics Conference on Enumerative Combinatorics (2006) (for terms 1 to 7)
- Brendan D. McKay, private communication (2006) (for term 8)
A058158
Triangle read by rows: T(n,k) is the number of labeled monoids of order n with k idempotents and a fixed identity.
Original entry on oeis.org
1, 1, 1, 1, 6, 4, 4, 45, 72, 35, 6, 528, 1308, 1676, 604, 80, 19935, 39700, 70170, 62060, 16727, 120, 3599436, 1969470, 3829000, 5167800, 3260382, 681232, 2760, 6085914205, 281840664, 294812385, 481221020, 482447637, 228315640, 38187291
Offset: 1
Triangle begins:
1;
1, 1;
1, 6, 4;
4, 45, 72, 35;
6, 528, 1308, 1676, 604;
80, 19935, 39700, 70170, 62060, 16727;
...
A336412
Number of labeled dihedral groups with a fixed identity.
Original entry on oeis.org
1, 1, 20, 630, 18144, 3326400, 148262400, 40864824000, 6586804224000, 3041127510220800, 464463110651904000, 538583682060103680000, 99430833611096064000000, 129629398219266097152000000, 73681349947830849621196800000, 64240926985765022013480960000000
Offset: 1
For n=3 the a(3)=20 isoplanar reduced Latin squares based on the dihedral group of order 6, in lexicographical order, are:
1) 2) 3) 4) 5)
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
2 1 4 3 6 5 2 1 4 3 6 5 2 1 4 3 6 5 2 1 4 3 6 5 2 1 5 6 3 4
3 5 1 6 2 4 3 5 6 2 4 1 3 6 1 5 4 2 3 6 5 2 1 4 3 4 1 2 6 5
4 6 2 5 1 3 4 6 5 1 3 2 4 5 2 6 3 1 4 5 6 1 2 3 4 3 6 5 1 2
5 3 6 1 4 2 5 3 2 6 1 4 5 4 6 2 1 3 5 4 1 6 3 2 5 6 2 1 4 3
6 4 5 2 3 1 6 4 1 5 2 3 6 3 5 1 2 4 6 3 2 5 4 1 6 5 4 3 2 1
6) 7) 8) 9) 10)
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
2 1 5 6 3 4 2 1 5 6 3 4 2 1 5 6 3 4 2 1 6 5 4 3 2 1 6 5 4 3
3 4 6 5 2 1 3 6 1 5 4 2 3 6 4 1 2 5 3 4 1 2 6 5 3 4 5 6 1 2
4 3 2 1 6 5 4 5 6 1 2 3 4 5 1 3 6 2 4 3 5 6 2 1 4 3 2 1 6 5
5 6 4 3 1 2 5 4 2 3 6 1 5 4 6 2 1 3 5 6 4 3 1 2 5 6 1 2 3 4
6 5 1 2 4 3 6 3 4 2 1 5 6 3 2 5 4 1 6 5 2 1 3 4 6 5 4 3 2 1
11) 12) 13) 14) 15)
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
2 1 6 5 4 3 2 1 6 5 4 3 2 3 1 5 6 4 2 3 1 6 4 5 2 4 5 1 6 3
3 5 1 6 2 4 3 5 4 1 6 2 3 1 2 6 4 5 3 1 2 5 6 4 3 6 1 5 4 2
4 6 5 1 3 2 4 6 1 3 2 5 4 6 5 1 3 2 4 5 6 1 2 3 4 1 6 2 3 5
5 3 4 2 6 1 5 3 2 6 1 4 5 4 6 2 1 3 5 6 4 3 1 2 5 3 2 6 1 4
6 4 2 3 1 5 6 4 5 2 3 1 6 5 4 3 2 1 6 4 5 2 3 1 6 5 4 3 2 1
16) 17) 18) 19) 20)
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
2 4 6 1 3 5 2 5 4 6 1 3 2 5 6 3 1 4 2 6 4 5 3 1 2 6 5 3 4 1
3 5 1 6 2 4 3 6 1 5 4 2 3 4 1 2 6 5 3 5 1 6 2 4 3 4 1 2 6 5
4 1 5 2 6 3 4 3 2 1 6 5 4 6 5 1 3 2 4 3 2 1 6 5 4 5 6 1 2 3
5 6 4 3 1 2 5 1 6 3 2 4 5 1 4 6 2 3 5 4 6 2 1 3 5 3 2 6 1 4
6 3 2 5 4 1 6 4 5 2 3 1 6 3 2 5 4 1 6 1 5 3 4 2 6 1 4 5 3 2
- Denes, J. and Keedwell, A. D. (1991) Latin Squares New Developments in the Theory and Applications. p. 98.
- R. A. Bailey, Quasi-Complete Latin Squares: Construction and Randomization, Journal of the Royal Statistical Society. Series B (Methodological) 46, no. 2 (1984): 330, 323-34.
- A. T. Benjamin, C. Converse, and H. A. Krieger, Note. How do I marry thee? Let me count the ways, Discrete Appl. Math. 59 (1995) 285-292.
- C. K. Nilrat and C. E. Prager, Complete latin squares: terraces for groups, Ars Combinatoria 24 (1988), 17-29.
- Yaghoub Sharifi, Automorphisms of dihedral groups.
- E. G. Thurber, Concerning the maximum number of stable matchings in the stable marriage problem, Discrete Mathematics Volume 248, Issue 1-3, 6 April 2002, 195-219.
Showing 1-6 of 6 results.
Comments