A351409
a(n) = n*(n!)^(2*n-2).
Original entry on oeis.org
1, 8, 3888, 764411904, 214990848000000000, 224634374557469245440000000000, 1880461634768804771224006806208512000000000000, 240091793104790737576620139562796649430329798636339200000000000000, 813675117804798213250391541747787241264315446434692481270971279693253181440000000000000000
Offset: 1
- Andrew Howroyd, Table of n, a(n) for n = 1..20
- Matvey Borodin, Eric Chen, Aidan Duncan, Tanya Khovanova, Boyan Litchev, Jiahe Liu, Veronika Moroz, Matthew Qian, Rohith Raghavan, Garima Rastogi, and Michael Voigt, Sequences of the Stable Matching Problem, arXiv:2201.00645 [math.HO], 2021, [Section 7, Symmetries].
A263921
Number of multisets of n permutations of [n] with the symmetric group acting on the permutation elements.
Original entry on oeis.org
1, 1, 2, 10, 762, 1876255, 274382326290, 3265588553925722827, 4299566944396584777543664576, 828675148077536475804944305151462053905, 30068353582978459601855528390398866877243129478172220
Offset: 0
- F. Harary and E. Palmer, Graphical Enumeration, Academic Press, NY, 1973.
- Ö. Egecioglu, Uniform generation of anonymous and neutral preference profiles for social choice rules, UC Santa Barbara Report 2005-25.
- Ö. Egecioglu, Uniform generation of anonymous and neutral preference profiles for social choice rules, Monte Carlo Methods and Applications, 15(3), Jan 2009, 241-255.
- Dan Eilers, Examples for n=3, n=4
- Marko R. Riedel, Combinatorial counting with symmetry
- Marko Riedel, Maple implementation of Power Group Enumeration
A123234 (reduced latin squares up to row/column permutation).
A351413
a(n) is the maximum number of stable matchings in the Latin Stable Marriage Problem of order n.
Original entry on oeis.org
1, 2, 3, 10, 9, 48, 61
Offset: 1
Maximal instance of order 2 with 2 stable matchings:
12
21
Maximal instance of order 3 with 3 stable matchings:
123
231
312
Maximal instance of order 4 with 10 stable matchings (group C2xC2):
1234
2143
3412
4321
Maximal instance of order 5 with 9 stable matchings:
12345
21453
34512
45231
53124
Maximal instance of order 6 with 48 stable matchings (Dihedral group):
123456
214365
365214
456123
541632
632541
Maximal instance of order 7 with 61 stable matchings:
1234567
2316745
3125476
4657312
5743621
6471253
7562134
- C. Converse, Lower bounds for the maximum number of stable pairings for the general marriage problem based on the latin marriage problem, Ph. D. Thesis, Claremont Graduate School, Claremont, CA (1992) [Examples are from 69-70].
- A. T. Benjamin, C. Converse, and H. A. Krieger, Note. How do I marry thee? Let me count the ways, Discrete Appl. Math. 59 (1995) 285-292.
- Matvey Borodin, Eric Chen, Aidan Duncan, Tanya Khovanova, Boyan Litchev, Jiahe Liu, Veronika Moroz, Matthew Qian, Rohith Raghavan, Garima Rastogi, and Michael Voigt, Sequences of the Stable Matching Problem, arXiv:2201.00645 [math.HO], 2021 [Sections 3.7 and 4.2].
- J. S. Hwang, Complete stable marriages and systems of I-M preferences, In: McAvaney K.L. (eds) Combinatorial Mathematics VIII. Lecture Notes in Mathematics, vol 884. Springer, Berlin, Heidelberg (1981) 49-63.
- E. G. Thurber, Concerning the maximum number of stable matchings in the stable marriage problem, Discrete Math., 248 (2002), 195-219.
A351580
a(n) is the number of multisets of size n-1 consisting of permutations of n elements.
Original entry on oeis.org
1, 2, 21, 2600, 9078630, 1634935320144, 22831938997720867560, 34390564970975286088924022400, 7457911916650283082000186530740981347120, 300682790088737748950725540713718365319268411170195200, 2830053444386286847574443631356044745870287426798365860653876609636480
Offset: 1
Starting with the following men's ranking table of order 3, where row k represents man k's rankings, the 1 in the 2nd position of row 3 means that man #3 ranks woman #2 as his 1st choice.
213
321
213
Step 1: reorder columns so row 1 is in natural order:
123
231
123
Step 2: reorder rows 2 to n so rows are in lexical order:
123
123
231
a(3)=21 because there are 1+2+3+4+5+6 = 21 possibilities for the last two rows in lexical order, with 3!=6 possible permutations for each row.
The 21 tables for a(3) are the following:
123 123 123 123 123 123 123
123 123 123 123 123 123 132
123 132 213 231 312 321 132
.
123 123 123 123 123 123 123
132 132 132 132 213 213 213
213 231 312 321 213 231 312
.
123 123 123 123 123 123 123
213 231 231 231 312 312 321
321 231 312 321 312 321 321
A351781
a(n) = (n-1)^n*(n-1)!^n.
Original entry on oeis.org
0, 1, 64, 104976, 8153726976, 46656000000000000, 28079296819683655680000000, 2400095991902688012207233433600000000, 37800243186554601452585666030525214621696000000000
Offset: 1
Showing 1-5 of 5 results.
Comments