cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A138286 a(n) = A058162(n) / A000688(n).

Original entry on oeis.org

1, 1, 1, 2, 6, 60, 120, 640, 3780, 90720, 362880, 6652800, 39916800, 1037836800, 10897286400, 53137244160, 1307674368000, 33345696384000, 355687428096000, 10137091700736000, 202741834014720000, 5109094217170944000, 51090942171709440000, 1641397888183173120000, 16157510461803110400000
Offset: 1

Views

Author

Artur Jasinski, Mar 12 2008

Keywords

Crossrefs

Extensions

a(16) corrected by and a(22) onwards from Georg Fischer, Nov 26 2021

A034382 Number of labeled Abelian groups of order n.

Original entry on oeis.org

1, 2, 3, 16, 30, 360, 840, 15360, 68040, 907200, 3991680, 159667200, 518918400, 14529715200, 163459296000, 4250979532800, 22230464256000, 1200445069824000, 6758061133824000, 405483668029440000
Offset: 1

Views

Author

Keywords

Crossrefs

Formula

a(n) = A058162(n) * n.
a(n) = Sum n!/|Aut(G)|, where the sum is taken over the different products G of cyclic groups with |G|=n. Formula for |Aut(G)| is given by Hillar and Rhea (2007). Another formula is given by Sugarknri (2019).

Extensions

a(16) corrected by Max Alekseyev, Sep 12 2019

A058160 Triangle read by rows: T(n,k) is the number of labeled commutative monoids of order n with k idempotents and a fixed identity.

Original entry on oeis.org

1, 1, 1, 1, 6, 2, 4, 45, 36, 9, 6, 408, 648, 348, 76, 60, 7195, 13500, 11790, 5280, 1065, 120, 200016, 369930, 425280, 293640, 118890, 22566, 1920, 13811077, 14716716, 18035745, 16347660, 9953265, 3750516, 674611, 7560, 3405271616, 1024787568, 971651856, 999666920, 794967600, 445001424, 157962168, 27019896
Offset: 1

Views

Author

Christian G. Bower, Nov 14 2000

Keywords

Examples

			Triangle begins:
   1;
   1,    1;,
   1,    6,     2;
   4,   45,    36,     9;
   6,  408,   648,   348,   76;
  60, 7195, 13500, 11790, 5280, 1065;
  ...
		

Crossrefs

Row sums give A058156.
Column 1: A058162.
Main diagonal A058164.
Cf. A058142 (isomorphism classes), A058158, A058159.

Formula

T(n, k) = A058159(n, k)/n.

Extensions

Terms a(30) and beyond from Andrew Howroyd, Feb 15 2022

A058161 Number of labeled cyclic groups with a fixed identity.

Original entry on oeis.org

1, 1, 1, 3, 6, 60, 120, 1260, 6720, 90720, 362880, 9979200, 39916800, 1037836800, 10897286400, 163459296000, 1307674368000, 59281238016000, 355687428096000, 15205637551104000, 202741834014720000, 5109094217170944000, 51090942171709440000
Offset: 1

Views

Author

Christian G. Bower, Nov 14 2000

Keywords

Comments

Degree of Lagrange resolvent of polynomial of n-th degree. Equals degree of symmetric group of order n divided by order of metacyclic group of order n. - Artur Jasinski, Jan 22 2008

Examples

			a(4)=3 because we have: <(1234)> = <(1432)>,  <(1243)> = <(1342)>,  <(1324)> = <(1423)>. - _Geoffrey Critzer_, Sep 07 2015
		

References

  • J. L. Lagrange, Oeuvres, Vol. III Paris 1869.

Crossrefs

a(n) = A000142(n-1)/A000010(n) = A034381(n)/n.
Cf. A002618.

Programs

  • Mathematica
    Table[n!/(n EulerPhi[n]), {n, 1, 20}] (* Artur Jasinski, Jan 22 2008 *)

Formula

a(n) = (n-1)!/phi(n).
a(n) = n!/A002618(n) - Artur Jasinski, Jan 22 2008

A058163 Number of labeled groups with a fixed identity.

Original entry on oeis.org

1, 1, 1, 4, 6, 80, 120, 2760, 7560, 108864, 362880, 21621600, 39916800, 1186099200, 10897286400, 647091244800, 1307674368000, 103742166528000, 355687428096000, 32438693442355200, 260668072304640000, 5573557327822848000, 51090942171709440000
Offset: 1

Views

Author

Christian G. Bower, Nov 15 2000

Keywords

Crossrefs

Programs

  • GAP
    A058163 := function(n) local fn1, sum, k; fn1 := Factorial(n-1); sum := 0; for k in [1 .. NrSmallGroups(n)] do sum := sum + fn1 / Size(AutomorphismGroup(SmallGroup(n,k))); od; return sum; end; # Stephen A. Silver, Feb 10 2013

Formula

a(n) = A034383(n)/n.

Extensions

More terms from Stephen A. Silver, Feb 10 2013

A111341 Number of Latin squares in dimension n with first row and first column 1,2,3,...,n that are non-associative but commutative (element ij = element ji).

Original entry on oeis.org

0, 0, 0, 0, 0, 396, 6120, 10934400, 1225559160, 130025295822240, 252282619805005440, 2209617218725251390961920, 98758655816833727741298666240
Offset: 1

Views

Author

Artur Jasinski, Nov 06 2005

Keywords

Comments

At order 6 there are commutative but non-associative Latin squares. - Artur Jasinski, Dec 08 2006

Formula

a(n) = A035481(n) - A058162(n).

Extensions

a(5) corrected and a(8)-a(13) added by Max Alekseyev, Jul 23 2025

A336412 Number of labeled dihedral groups with a fixed identity.

Original entry on oeis.org

1, 1, 20, 630, 18144, 3326400, 148262400, 40864824000, 6586804224000, 3041127510220800, 464463110651904000, 538583682060103680000, 99430833611096064000000, 129629398219266097152000000, 73681349947830849621196800000, 64240926985765022013480960000000
Offset: 1

Views

Author

Dan Eilers, Jul 20 2020

Keywords

Comments

a(n) is the number of dihedral groups of order 2n with a fixed identity, or equivalently the number of reduced Latin squares of order 2n that can be viewed as the Cayley table of D_{2n}, by adding a border that matches the first row and column. The reduced Latin squares differ from each other by a permutation of their symbols. Two such Latin squares that differ by a permutation of their symbols have been called isoplanar by Bailey (1984), cited by Nilrat and Praeger (1988), cited by Denes and Keedwell (1991). Latin squares based on dihedral groups are of interest in the stable marriage problem, where Benjamin et al. (1995) exhibited such squares having many stable matchings when viewed as ranking matrices. Two isoplanar Latin squares generally produce a different number of stable matchings, so there is motivation to generate all symbol permutations to find the ones with the most stable matchings.
See comments in A002618 regarding automorphisms of dihedral groups by Ola Veshta and Yaghoub Sharifi. - Dan Eilers, Jun 08 2024

Examples

			For n=3 the a(3)=20 isoplanar reduced Latin squares based on the dihedral group of order 6, in lexicographical order, are:
1)             2)             3)             4)             5)
1 2 3 4 5 6    1 2 3 4 5 6    1 2 3 4 5 6    1 2 3 4 5 6    1 2 3 4 5 6
2 1 4 3 6 5    2 1 4 3 6 5    2 1 4 3 6 5    2 1 4 3 6 5    2 1 5 6 3 4
3 5 1 6 2 4    3 5 6 2 4 1    3 6 1 5 4 2    3 6 5 2 1 4    3 4 1 2 6 5
4 6 2 5 1 3    4 6 5 1 3 2    4 5 2 6 3 1    4 5 6 1 2 3    4 3 6 5 1 2
5 3 6 1 4 2    5 3 2 6 1 4    5 4 6 2 1 3    5 4 1 6 3 2    5 6 2 1 4 3
6 4 5 2 3 1    6 4 1 5 2 3    6 3 5 1 2 4    6 3 2 5 4 1    6 5 4 3 2 1
6)             7)             8)             9)             10)
1 2 3 4 5 6    1 2 3 4 5 6    1 2 3 4 5 6    1 2 3 4 5 6    1 2 3 4 5 6
2 1 5 6 3 4    2 1 5 6 3 4    2 1 5 6 3 4    2 1 6 5 4 3    2 1 6 5 4 3
3 4 6 5 2 1    3 6 1 5 4 2    3 6 4 1 2 5    3 4 1 2 6 5    3 4 5 6 1 2
4 3 2 1 6 5    4 5 6 1 2 3    4 5 1 3 6 2    4 3 5 6 2 1    4 3 2 1 6 5
5 6 4 3 1 2    5 4 2 3 6 1    5 4 6 2 1 3    5 6 4 3 1 2    5 6 1 2 3 4
6 5 1 2 4 3    6 3 4 2 1 5    6 3 2 5 4 1    6 5 2 1 3 4    6 5 4 3 2 1
11)            12)            13)            14)            15)
1 2 3 4 5 6    1 2 3 4 5 6    1 2 3 4 5 6    1 2 3 4 5 6    1 2 3 4 5 6
2 1 6 5 4 3    2 1 6 5 4 3    2 3 1 5 6 4    2 3 1 6 4 5    2 4 5 1 6 3
3 5 1 6 2 4    3 5 4 1 6 2    3 1 2 6 4 5    3 1 2 5 6 4    3 6 1 5 4 2
4 6 5 1 3 2    4 6 1 3 2 5    4 6 5 1 3 2    4 5 6 1 2 3    4 1 6 2 3 5
5 3 4 2 6 1    5 3 2 6 1 4    5 4 6 2 1 3    5 6 4 3 1 2    5 3 2 6 1 4
6 4 2 3 1 5    6 4 5 2 3 1    6 5 4 3 2 1    6 4 5 2 3 1    6 5 4 3 2 1
16)            17)            18)            19)            20)
1 2 3 4 5 6    1 2 3 4 5 6    1 2 3 4 5 6    1 2 3 4 5 6    1 2 3 4 5 6
2 4 6 1 3 5    2 5 4 6 1 3    2 5 6 3 1 4    2 6 4 5 3 1    2 6 5 3 4 1
3 5 1 6 2 4    3 6 1 5 4 2    3 4 1 2 6 5    3 5 1 6 2 4    3 4 1 2 6 5
4 1 5 2 6 3    4 3 2 1 6 5    4 6 5 1 3 2    4 3 2 1 6 5    4 5 6 1 2 3
5 6 4 3 1 2    5 1 6 3 2 4    5 1 4 6 2 3    5 4 6 2 1 3    5 3 2 6 1 4
6 3 2 5 4 1    6 4 5 2 3 1    6 3 2 5 4 1    6 1 5 3 4 2    6 1 4 5 3 2
		

References

  • Denes, J. and Keedwell, A. D. (1991) Latin Squares New Developments in the Theory and Applications. p. 98.

Crossrefs

Cf. A058163 (all groups), A058162 (Abelian groups), A058161 (cyclic groups), A069156 (stable matchings), A002618 (n*phi(n)).

Programs

  • GAP
    A336412:=List([1..16], n->Factorial(2*n-1)/Size(AutomorphismGroup(DihedralGroup(2*n)))); # Dan Eilers, Jun 08 2024

Formula

a(1) = a(2) = 1; a(n>2) = (2*n-1)! / A002618(n). - Dan Eilers, Jun 08 2024

Extensions

a(8)-a(16) and edited by Dan Eilers, Jun 08 2024
Showing 1-7 of 7 results.