A058199 Where d(m) (number of divisors, A000005) falls by at least n.
4, 6, 12, 12, 24, 30, 36, 60, 60, 60, 120, 120, 120, 180, 180, 180, 240, 240, 360, 360, 360, 420, 720, 720, 720, 720, 840, 840, 840, 1260, 1260, 1260, 1680, 1680, 1680, 1680, 1680, 2160, 2520, 2520, 2520, 2520, 2520, 2520, 2520, 2520, 5040, 5040, 5040
Offset: 1
Examples
d(12) = 6, d(13) = 2 gives first drop of >= 3, so a(3) = a(4) = 12.
References
- József Sándor, Dragoslav S. Mitrinovic, and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter II, p. 39, section II.1.3.a.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..2014 (terms 1..500 from T. D. Noe)
- Pál Turán, Problem 71, Matematikai Lapok, Vol. 5 (1954), p. 48, entire volume; Solution to Problem 71, by Lajos Takács, ibid., Vol. 56, (1956), p. 154, entire volume.
Programs
-
Haskell
import Data.List (findIndex) import Data.Maybe (fromJust) a058199 n = fromJust $ findIndex (n <=) $ map negate a051950_list -- Reinhard Zumkeller, Feb 04 2013
-
Mathematica
max = 10^4; dd = Differences[Table[DivisorSigma[0, m], {m, 1, max}]]; a[n_] := Position[dd, d_ /; d <= -n, 1, 1][[1, 1]]; Table[a[n], {n, 1, -Min[dd] }] (* Jean-François Alcover, Nov 23 2015 *)
Formula
A051950(a(n) + 1) <= - n. - Reinhard Zumkeller, Feb 04 2013
Extensions
More terms from James Sellers, Nov 29 2000
Comments