cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A058212 a(n) = 1 + floor(n*(n-3)/6).

Original entry on oeis.org

1, 0, 0, 1, 1, 2, 4, 5, 7, 10, 12, 15, 19, 22, 26, 31, 35, 40, 46, 51, 57, 64, 70, 77, 85, 92, 100, 109, 117, 126, 136, 145, 155, 166, 176, 187, 199, 210, 222, 235, 247, 260, 274, 287, 301, 316, 330, 345, 361, 376, 392, 409, 425, 442, 460, 477, 495, 514, 532, 551
Offset: 0

Views

Author

N. J. A. Sloane, Nov 30 2000

Keywords

Comments

For n >= 3, number of solutions to x+y+z == 0 (mod n) with 0 <= x < y < z < n. E.g., for n=3 there is a unique solution, x=0, y=1, z=2.

Crossrefs

Cf. A003035.
Apart from initial term, same as A007997.
The third diagonal of A061857.

Programs

  • Haskell
    a058212 n = 1 + n * (n - 3) `div` 6  -- Reinhard Zumkeller, May 08 2012
    
  • Mathematica
    Table[Floor[(n(n-3))/6]+1,{n,0,70}] (* or *) LinearRecurrence[{2,-1,1,-2,1},{1,0,0,1,1},70] (* Harvey P. Dale, Jun 21 2021 *)
  • PARI
    a(n)=n*(n-3)\6 + 1 \\ Charles R Greathouse IV, Jun 11 2015
  • Sage
    [ceil(binomial(n,2)/3) for n in range(-1, 55)] # Zerinvary Lajos, Dec 03 2009
    

Formula

From Paul Barry, Mar 18 2004: (Start)
G.f.: (1 - 2x + x^2 + x^4)/((1 - x)^2(1 - x^3)).
a(n) = 4*cos(2*Pi*n/3)/9 + (3*n^2 - 9*n + 10)/18. (End)
E.g.f.: (exp(x)*(10 - 6*x + 3*x^2) + 8*exp(-x/2)*cos(sqrt(3)*x/2))/18. - Stefano Spezia, May 03 2023
Sum_{n>=3} 1/a(n) = 6 - (2*Pi/sqrt(3))*(1 - tanh(sqrt(5/3)*Pi/2)/sqrt(5)). - Amiram Eldar, May 06 2023

Extensions

Zerinvary Lajos, Dec 07 2009