A058304 Continued fraction for Liouville's number (A012245).
0, 9, 11, 99, 1, 10, 9, 999999999999, 1, 8, 10, 1, 99, 11, 9, 999999999999999999999999999999999999999999999999999999999999999999999999, 1, 8, 11, 99, 1, 10, 8, 1, 999999999999, 9, 10, 1, 99, 11, 9
Offset: 0
Examples
0.1100010000000000000000010... = 0 + 1/(9 + 1/(11 + 1/(99 + 1/(1 + ...)))). - _Harry J. Smith_, May 15 2009
References
- Harold M. Stark, "An Introduction to Number Theory," The MIT Press, Cambridge, MA and London, England, Eighth Printing, 1994, pages 172 - 177.
Links
- Muniru A Asiru, Table of n, a(n) for n = 0..62
- J. O. Shallit, Simple Continued Fractions for Some Irrational Numbers II, J. Number Theory 14 (1982), 228-231.
- Eric Weisstein's World of Mathematics, Liouville's Constant
- G. Xiao, Contfrac
- Index entries for continued fractions for constants
Crossrefs
Programs
-
Maple
with(numtheory): cfrac(add(1/10^factorial(n),n=1..7),62,'quotients'); # Muniru A Asiru, Aug 08 2018
-
Mathematica
ContinuedFraction[ Sum[ 1 /10^(n!), {n, 1, 7} ], 40 ]
-
PARI
{ allocatemem(932245000); default(realprecision, 200000); x=contfrac(suminf(n=1, 1.0/10^n!)); for (n=1, 255, write("b058304.txt", n, " ", x[n])); } \\ Harry J. Smith, May 15 2009
-
Python
n,f,i,p,q,base = 1,1,0,0,1,10 while i < 1000: i,p,q = i+1,p*base,q*base if i == f: p,n = p+1,n+1 f = f*n n,a,j = 0,0,0 while p%q > 0: a,f,p,q = a+1,p//q,q,p%q print(a-1,f) # A.H.M. Smeets, Aug 03 2018
Formula
From A.H.M. Smeets, Jun 26 2018: (Start)
a(n) = 1 iff n in A317331,
a(n) = 8 iff n in A317332,
a(n) = 9 iff n in A317333,
a(n) = 10 iff n = 8*m - 6 + 3*(m mod 2) for m > 0,
a(n) = 11 iff n = 8*m - 3 - 3*(m mod 2) for m > 0,
a(n) = 10^((m-1)*m!)-1 iff n in {2^m*(1+k*4) - 1 | k >= 0} union {2^m*(3+k*4) | k >= 0} for m > 1. (End)
Extensions
Offset changed to 0 on the advice of A.H.M. Smeets by Muniru A Asiru, Aug 11 2018
Comments