cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A000109 Number of simplicial polyhedra with n vertices; simple planar graphs with n vertices and 3n-6 edges; maximal simple planar graphs with n vertices; planar triangulations with n vertices; triangulations of the sphere with n vertices; 3-connected cubic planar graphs on 2n-4 vertices.

Original entry on oeis.org

1, 1, 1, 2, 5, 14, 50, 233, 1249, 7595, 49566, 339722, 2406841, 17490241, 129664753, 977526957, 7475907149, 57896349553, 453382272049, 3585853662949, 28615703421545
Offset: 3

Views

Author

Keywords

Comments

Every planar triangulation on n >= 4 vertices is 3-connected (the connectivity either 3, 4, or 5) and its dual graph is a 3-connected cubic planar graph on 2n-4 vertices. - Manfred Scheucher, Mar 17 2023

References

  • G. Brinkmann and Brendan McKay, in preparation. [Looking at http://users.cecs.anu.edu.au/~bdm/publications.html, there are a few papers with Brinkmann that seem relevant, in particular #126 but also #97, 81, 158. Perhaps the right one is 126.]
  • M. B. Dillencourt, Polyhedra of small orders and their Hamiltonian properties. Tech. Rep. 92-91, Info. and Comp. Sci. Dept., Univ. Calif. Irvine, 1992.
  • C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979.
  • B. Grünbaum, Convex Polytopes. Wiley, NY, 1967, p. 424.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

From William P. Orrick, Apr 07 2021: (Start)
a(n) >= A007816(n-3)/n! = binomial(n,2)*(4*n-11)!/(n!*(3*n-6)!) for all n >= 4.
a(n) ~ A007816(n-3)/n! = binomial(n,2)*(4*n-11)!/(n!*(3*n-6)!) ~ (1/64)*sqrt(1/(6*Pi))*n^(-7/2)*(256/27)^(n-2), using the theorem that the automorphism group of a maximal planar graph is almost certainly trivial as n gets large. (Tutte)
(End)

Extensions

Extended by Brendan McKay and Gunnar Brinkmann using their program "plantri", Dec 19 2000
Definition clarified by Manfred Scheucher, Mar 17 2023

A005964 Number of trivalent connected (or cubic) planar graphs with 2n nodes.

Original entry on oeis.org

0, 1, 1, 3, 9, 32, 133, 681, 3893, 24809, 169206, 1214462, 9034509, 69093299, 539991437
Offset: 1

Views

Author

Keywords

References

  • A. T. Balaban, Enumeration of Cyclic Graphs, pp. 63-105 of A. T. Balaban, ed., Chemical Applications of Graph Theory, Ac. Press, 1976; see p. 92.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

Extended by Brendan McKay and Gunnar Brinkmann using their program "plantri", Dec 19 2000

A387146 Number of unlabeled biconnected cubic simple graphs with 2n nodes.

Original entry on oeis.org

1, 0, 1, 2, 5, 18, 81, 480, 3874, 39866, 497818, 7187627, 116349635
Offset: 0

Views

Author

Hugo Pfoertner, Aug 21 2025

Keywords

Crossrefs

Showing 1-3 of 3 results.