cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A058403 Coefficient triangle of polynomials (rising powers) related to Pell number convolutions. Companion triangle is A058402.

Original entry on oeis.org

2, 20, 8, 360, 288, 48, 9840, 11360, 3520, 320, 363360, 522752, 225344, 37888, 2176, 16776000, 27849600, 14871296, 3491072, 373504, 14848, 922158720, 1692808704, 1053556480, 308703232, 46459904, 3467264, 101376, 58499239680, 115821927936
Offset: 0

Views

Author

Wolfdieter Lang, Dec 11 2000

Keywords

Comments

The row polynomials are q(k,x) := sum(a(k,m)*x^m,m=0..k), k=0,1,2,...
The k-th convolution of P0(n) := A000129(n+1), n >= 0, (Pell numbers starting with P0(0)=1) with itself is Pk(n) := A054456(n+k,k) = ( p(k-1,n)*(n+1)*2*P0(n+1) + q(k-1,n)*(n+2)*P0(n))/(k!*8^k), k=1,2,..., where the companion polynomials p(k,n) := sum(b(k,m)*n^m,m=0..k), k >= 0, are the row polynomials of triangle b(k,m)= A058402(k,m).

Examples

			k=2: P2(n)=((22+8*n)*(n+1)*2*P0(n+1)+(20+8*n)*(n+2)*P0(n))/128, cf. A054457.
2; 20,8; 360,288,48; ... (lower triangular matrix a(k,m), k >= m >= 0, else 0).
		

Crossrefs

Cf. A000129, A054456, A058402, A058404-5 (falling powers).

Formula

Recursion for row polynomials defined in the comments: see A058402.

Extensions

Link and cross-references added by Wolfdieter Lang, Jul 31 2002

A058404 Coefficient triangle of polynomials (falling powers) related to Pell number convolutions. Companion triangle is A058405.

Original entry on oeis.org

1, 8, 22, 56, 376, 588, 384, 4576, 17024, 19656, 2624, 48256, 313504, 848096, 801360, 17920, 468608, 4643072, 21685888, 47494272, 38797920, 122368, 4307456, 60136448, 424509952, 1590913920, 2986217856, 2181332160, 835584, 38055936
Offset: 0

Views

Author

Wolfdieter Lang, Dec 11 2000

Keywords

Comments

The row polynomials are p(k,x) := sum(a(k,m)*x^(k-m),m=0..k), k=0,1,2,..
The k-th convolution of P0(n) := A000129(n+1), n >= 0, (Pell numbers starting with P0(0)=1) with itself is Pk(n) := A054456(n+k,k) = (p(k-1,n)*(n+1)*2*P0(n+1) + q(k-1,n)*(n+2)*P0(n))/(k!*8^k), k=1,2,..., where the companion polynomials q(k,n) := sum(b(k,m)*n^(k-m),m=0..k), k >= 0, are the row polynomials of triangle b(k,m)= A058405(k,m).
a(k,0)= A057084(k), k >= 0 (conjecture).

Examples

			k=2: P2(n)=(8*n+22)*(n+1)*2*P0(n+1)+(8*n+20)*(n+2)*P0(n))/128, cf. A054457.
1; 8,22; 56,376,588; ... (lower triangular matrix a(k,m), k >= m >= 0, else 0)
		

Crossrefs

Cf. A000129, A054456, A058405, A054457, A057084, A058402-3 (rising powers).

Formula

Recursion for row polynomials defined in the comments: see A058402.

Extensions

Link and cross-references added by Wolfdieter Lang, Jul 31 2002

A073385 Eighth convolution of A000129(n+1) (generalized (2,1)-Fibonacci, called Pell numbers), n>=0, with itself.

Original entry on oeis.org

1, 18, 189, 1500, 9945, 58014, 307197, 1507176, 6950295, 30443270, 127666539, 515754252, 2017069431, 7667214570, 28419251715, 102997948704, 365832349542, 1275914693196, 4376992440590
Offset: 0

Views

Author

Wolfdieter Lang, Aug 02 2002

Keywords

Comments

For a(n) in terms of U(n+1) and U(n) with U(n) = A000129(n+1) see the row polynomials of triangles A058402 and A058403 and the comment there.

Crossrefs

Ninth (m=8) column of triangle A054456.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/(1-2*x-x^2)^9 )); // G. C. Greubel, Oct 03 2022
  • Mathematica
    CoefficientList[Series[1/(1-(2+x)x)^9,{x,0,20}],x] (* Harvey P. Dale, Apr 26 2017 *)
  • Sage
    taylor( 1/(1-2*x-x^2)^9, x, 0,27).list() # G. C. Greubel, Oct 03 2022
    

Formula

a(n) = Sum_{k=0..n} b(k)*c(n-k), with b(k) = A000129(k+1) and c(k) = A073384(k).
a(n) = Sum_{k=0..floor(n/2)} 2^(n-2*k)*binomial(n-k+8, 8)*binomial(n-k, k).
G.f.: 1/(1-(2+x)*x)^9.
a(n) = F''''''''(n+9, 2)/8!, that is, 1/8! times the 8th derivative of the (n+9)-th Fibonacci polynomial evaluated at x=2. - T. D. Noe, Jan 19 2006

A058405 Coefficient triangle of polynomials (falling powers) related to Pell number convolutions. Companion triangle is A058404.

Original entry on oeis.org

2, 8, 20, 48, 288, 360, 320, 3520, 11360, 9840, 2176, 37888, 225344, 522752, 363360, 14848, 373504, 3491072, 14871296, 27849600, 16776000, 101376, 3467264, 46459904, 308703232, 1053556480, 1692808704, 922158720, 692224, 30834688
Offset: 0

Views

Author

Wolfdieter Lang, Dec 11 2000

Keywords

Comments

The row polynomials are q(k,x) := sum(a(k,m)*x^(k-m),m=0..k), k=0,1,2,..
The k-th convolution of P0(n) := A000129(n+1), n >= 0, (Pell numbers starting with P0(0)=1) with itself is Pk(n) := A054456(n+k,k) = (p(k-1,n)*(n+1)*2*P0(n+1) + q(k-1,n)*(n+2)*P0(n))/(k!*8^k), k=1,2,..., where the companion polynomials p(k,n) := sum(b(k,m)*n^(k-m),m=0..k) are the row polynomials of triangle b(k,m)= A058404(k,m).

Examples

			k=2: P2(n)=((8*n+22)*(n+1)*2*P0(n+1)+(8*n+20)*(n+2)*P0(n))/128, cf. A054457.
2; 8,20; 48,288,360; ... (lower triangular matrix a(k,m), k >= m >= 0, else 0)
		

Crossrefs

Cf. A000129, A054456, A058404, A054457, A058402-3 (rising powers).

Formula

Recursion for row polynomials defined in the comments: see A058402.

Extensions

Link and cross-references added by Wolfdieter Lang, Jul 31 2002

A073386 Ninth convolution of A000129(n+1) (generalized (2,1)-Fibonacci, called Pell numbers), n>=0, with itself.

Original entry on oeis.org

1, 20, 230, 1980, 14135, 88264, 497860, 2591160, 12630475, 58295380, 256887774, 1087825180, 4449607565, 17654254880, 68177369040, 257006941664, 948023601910, 3428968838680, 12182953719860
Offset: 0

Views

Author

Wolfdieter Lang, Aug 02 2002

Keywords

Comments

For a(n) in terms of U(n+1) and U(n) with U(n) = A000129(n+1) see the row polynomials of triangles A058402 and A058403 and the comment there.

Crossrefs

Tenth (m=9) column of triangle A054456.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/(1-2*x-x^2)^10 )); // G. C. Greubel, Oct 03 2022
    
  • Mathematica
    CoefficientList[Series[1/(1-2*x-x^2)^10, {x,0,40}], x] (* G. C. Greubel, Oct 03 2022 *)
    LinearRecurrence[{20,-170,780,-1965,2064,1800,-6480,1710,8600,-3772,-8600,1710,6480,1800,-2064,-1965,-780,-170,-20,-1},{1,20,230,1980,14135,88264,497860,2591160,12630475,58295380,256887774,1087825180,4449607565,17654254880,68177369040,257006941664,948023601910,3428968838680,12182953719860,42585118702280},20] (* Harvey P. Dale, Nov 20 2022 *)
  • SageMath
    def A073386_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/(1-2*x-x^2)^10 ).list()
    A073386_list(40) # G. C. Greubel, Oct 03 2022

Formula

a(n) = Sum_{k=0..n} b(k)*c(n-k), with b(k) = A000129(k+1) and c(k) = A073385(k).
a(n) = Sum_{k=0..floor(n/2)} 2^(n-2*k)*binomial(n-k+9, 9)*binomial(n-k, k).
G.f.: 1/(1-(2+x)*x)^10.
a(n) = F'''''''''(n+10, 2)/9!, that is, 1/9! times the 9th derivative of the (n+10)th Fibonacci polynomial evaluated at x=2. - T. D. Noe, Jan 19 2006
Showing 1-5 of 5 results.