cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A058411 Numbers k such that k^2 contains only digits {0,1,2}, not ending with zero.

Original entry on oeis.org

1, 11, 101, 149, 1001, 1011, 1101, 10001, 10011, 11001, 14499, 100001, 100011, 100101, 101001, 110001, 316261, 1000001, 1000011, 1000101, 1010001, 1010011, 1100001, 1100101, 10000001, 10000011, 10000101, 10001001, 10001011, 10001101, 10010001, 10100001, 10100011, 10110001
Offset: 1

Views

Author

Patrick De Geest, Nov 15 2000

Keywords

Comments

Sporadic solutions (not consisting only of digits 0 and 1): a(4) = 149, a(11) = 14499, a(17) = 316261, a(209) = 4604367505011, a(715) = 10959977245460011, a(1015) = 110000500908955011, a(1665) = 10099510939154979751, ... Three infinite subsequences are given by numbers of the form 10...01, 10...011 and 110...01, but there are many others. - M. F. Hasler, Nov 14 2017
From Zhao Hui Du, Mar 12 2024: (Start)
Most terms have a special pattern in that they have only digits 0 and 1 and could be written as Sum_{h=0..t} 10^x(h), where 2x(h) and x(h1)+x(h2) are distinct and x(0)=0 for the nonzero ending constraint. The number of n-digit terms in the sequence in the special pattern is A143823(n) - 2*A143823(n-1) + A143823(n-2) for n >= 2.
Terms with only digits 0 and 1 but not in the special pattern exist as well. If we define f(x) = 1 + x^768 + x^960 + x^1008 + x^1020 + x^1028 + x^1040 + x^1088 + x^1280 + x^2048, f(x)^2 is a function with all nonzero coefficients 1,2,10 (the only coefficient of x^2048 is 10 and the coefficient of x^2049 is 0). So f(10) is in the sequence but not in the special pattern. (End)

Crossrefs

Cf. A058412 (the squares); A058412, ..., A058474 (other 3-digit combinations).
Cf. A063009, A066139. - Zak Seidov, Jul 01 2013

Programs

  • Magma
    [n: n in [1..2*10^8 by 2] | Set(Intseq(n^2)) subset [0,1,2]]; // Vincenzo Librandi, Feb 24 2016
  • Maple
    R[1]:= {1,9};
    for m from 2 to 10 do
      R[m]:= select(t -> max(convert(t^2 mod 10^m, base, 10)) <= 2, map(s -> seq(s + i*10^(m-1),i=0..9), R[m-1]))
    od:
    Res:= {seq(op(select(t -> t >= 10^(m-1) and max(convert(t^2,base,10)) <= 2, R[m])),m=1..10)}:
    sort(convert(Res,list)); # Robert Israel, Feb 23 2016
  • Mathematica
    Select[Range[10^6], And[Total@ Take[RotateRight@ DigitCount@ #, -7] == 0, Mod[#, 10] != 0] &[#^2] &] (* Michael De Vlieger, Nov 14 2017 *)
  • PARI
    isok(n)={ n%10 && vecmax(digits(n^2)) < 3 } \\ Michel Marcus, Feb 24 2016, edited by M. F. Hasler, Nov 14 2017
    
  • Python
    A058411_list = [i for i in range(10**6) if i % 10 and max(str(i**2)) < '3'] # Chai Wah Wu, Feb 23 2016
    

Formula

a(n) = sqrt(A058412(n)). - Zak Seidov, Jul 01 2013

Extensions

b-file corrected by Zhao Hui Du, Mar 07 2024