cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A058682 a(n) = p(0) + p(1) + ... + p(n) - n - 1, where p = partition numbers, A000041.

Original entry on oeis.org

0, 0, 1, 3, 7, 13, 23, 37, 58, 87, 128, 183, 259, 359, 493, 668, 898, 1194, 1578, 2067, 2693, 3484, 4485, 5739, 7313, 9270, 11705, 14714, 18431, 22995, 28598, 35439, 43787, 53929, 66238, 81120, 99096, 120732, 146746, 177930, 215267, 259849, 313022, 376282
Offset: 0

Views

Author

N. J. A. Sloane, Dec 30 2000

Keywords

Comments

Number of non-isomorphic rank-2 matroids over S_n.
Starting (1, 3, 7, 13, ...) = row sums of triangle A171239. - Gary W. Adamson, Dec 05 2009

References

  • Acketa, Dragan M. "On the enumeration of matroids of rank-2." Zbornik radova Prirodnomatematickog fakulteta-Univerzitet u Novom Sadu 8 (1978): 83-90. - N. J. A. Sloane, Dec 04 2022

Crossrefs

Column k=2 of A053534.
Cf. A000041, A000065 (first differences), A000070.
Cf. A171239. - Gary W. Adamson, Dec 05 2009

Programs

  • GAP
    List([1..41],n->Sum([1..n-1],k->NrPartitions(k)-1)); # Muniru A Asiru, Aug 10 2018
  • Maple
    a:= proc(n) option remember; `if`(n<2, 0,
          combinat[numbpart](n)+a(n-1)-1)
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Oct 10 2019
  • Mathematica
    With[{s = PartitionsP /@ Range[0, 40]}, MapIndexed[Total@ Take[s, First@ #2] - First@ #2 &, s]] (* Michael De Vlieger, Sep 04 2017 *)
    With[{nn=50},#[[2]]-#[[1]]&/@Thread[{Range[0,nn],Accumulate[PartitionsP[Range[0,nn]]]}]]-1 (* Harvey P. Dale, Sep 05 2023 *)

Formula

G.f.: -1/(1 - x)^2 + (1/(1 - x))*Product_{k>=1} 1/(1 - x^k). - Ilya Gutkovskiy, Aug 10 2018

Extensions

Name clarified by Ilya Gutkovskiy, Aug 10 2018