A058695 Number of ways to partition 2n+1 into positive integers.
1, 3, 7, 15, 30, 56, 101, 176, 297, 490, 792, 1255, 1958, 3010, 4565, 6842, 10143, 14883, 21637, 31185, 44583, 63261, 89134, 124754, 173525, 239943, 329931, 451276, 614154, 831820, 1121505, 1505499, 2012558, 2679689, 3554345, 4697205, 6185689, 8118264, 10619863
Offset: 0
Keywords
Examples
G.f. = 1 + 3*x + 7*x^2 + 15*x^3 + 30*x^4 + 56*x^5 + 101*x^6 + 176*x^7 + 297*x^8 + ... G.f. = q^23 + 3*q^71 + 7*q^119 + 15*q^167 + 30*q^215 + 56*q^263 + 101*q^311 + ...
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..2000 from Robert Israel)
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Maple
a:= n-> combinat[numbpart](2*n+1): seq(a(n), n=0..42); # Alois P. Heinz, Jan 29 2020
-
Mathematica
nn=100;Table[CoefficientList[Series[Product[1/(1-x^i),{i,1,nn}],{x,0,nn}],x][[2i]],{i,1,nn/2}] (* Geoffrey Critzer, Sep 28 2013 *) (* also *) Table[PartitionsP[2 n + 1], {n, 0, 40}] (* Clark Kimberling, Mar 02 2014 *) (* also *) Table[Count[IntegerPartitions[3 n - 1], p_ /; MemberQ[p, n]], {n, 20}] (* Clark Kimberling, Mar 02 2014 *)
-
PARI
{a(n) = if( n<0, 0, polcoeff( 1 / eta(x + O(x^(2*n + 2))), 2*n + 1))}; /* Michael Somos, Apr 25 2003 */
-
PARI
a(n) = numbpart(2*n+1); \\ Michel Marcus, Sep 28 2013
Formula
a(n) = A000041(2*n + 1).
Euler transform of period 16 sequence [ 3, 1, 2, 2, 2, 2, 3, 1, 3, 2, 2, 2, 2, 1, 3, 1, ...]. - Michael Somos, Apr 25 2003
G.f.: (Sum_{k>=0} x^A074377(k)) / (Product_{k>0} (1 - x^k))^2. - Michael Somos, Apr 25 2003
Expansion of f(x^1, x^7) / f(-x)^2 in powers of x where f() is a Ramanujan theta function. - Michael Somos, Feb 16 2014
Comments