A058809 The sequence lambda(3,n), where lambda is defined in A055203. Number of ways of placing n identifiable positive intervals with a total of exactly three starting and/or finishing points.
0, 0, 6, 24, 78, 240, 726, 2184, 6558, 19680, 59046, 177144, 531438, 1594320, 4782966, 14348904, 43046718, 129140160, 387420486, 1162261464, 3486784398, 10460353200, 31381059606, 94143178824, 282429536478, 847288609440
Offset: 0
Examples
a(2)=6 since intervals a-a and b-b can be combined as a-ab-b, a-b-ab, ab-a-b, b-ab-a, b-a-ab, or ab-b-a. The level 2 Hanoi graph has 9 vertices, 6 with degree 3, so a(2) = 6.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Federico Ardila and Laura Escobar, The harmonic polytope, arXiv:2006.03078 [math.CO], 2020.
- Allan Bickle, Properties of Sierpinski Triangle Graphs, Springer PROMS 448 (2021) 295-303.
- A. Hinz, S. Klavzar, and S. Zemljic, A survey and classification of Sierpinski-type graphs, Discrete Applied Mathematics 217 3 (2017), 565-600.
- Eric Weisstein's World of Mathematics, Hanoi Graph
- Eric Weisstein's World of Mathematics, Wheel Graph
- Index entries for linear recurrences with constant coefficients, signature (4,-3).
Programs
-
Mathematica
Join[{0},NestList[3#+6&,0,30]] (* or *) Join[{0},LinearRecurrence[{4,-3},{0,6},30]] (* Harvey P. Dale, Sep 29 2013 *)
-
PARI
concat([0,0], Vec(6*x^2 / ((1 - x)*(1 - 3*x)) + O(x^30))) \\ Colin Barker, Oct 14 2020
Formula
For n>0, a(n) = 3^n-3 = 3*a(n-1)+6.
a(0)=0, a(1)=0, a(2)=6, a(n) = 4*a(n-1)-3*a(n-2). - Harvey P. Dale, Sep 29 2013
G.f.: 6*x^2 / ((1 - x)*(1 - 3*x)). - Colin Barker, Oct 14 2020
Comments