A058922 a(n) = n*2^n - 2^n = 2^n*(n-1).
0, 4, 16, 48, 128, 320, 768, 1792, 4096, 9216, 20480, 45056, 98304, 212992, 458752, 983040, 2097152, 4456448, 9437184, 19922944, 41943040, 88080384, 184549376, 385875968, 805306368, 1677721600, 3489660928, 7247757312, 15032385536, 31138512896, 64424509440, 133143986176
Offset: 1
Links
- Harry J. Smith, Table of n, a(n) for n = 1..200
- Jonas Wallgren, Hierarchical sequences, 2001.
- Index entries for linear recurrences with constant coefficients, signature (4,-4).
Crossrefs
Cf. A000337. - Omar E. Pol, Feb 22 2010
Programs
-
Haskell
a058922 n = (n - 1) * 2 ^ n a058922_list = zipWith (*) [0..] $ tail a000079_list -- Reinhard Zumkeller, Jul 11 2014
-
Mathematica
Table[n*2^n-2^n,{n,100}] (* Vladimir Joseph Stephan Orlovsky, Jan 15 2011 *)
-
PARI
a(n) = { n*2^n - 2^n } \\ Harry J. Smith, Jun 24 2009
Formula
a(n) = -det(M(n+1)) where M(n) is the n X n matrix with m(i,i)=1, m(i,j)=-i/j for i != j. - Benoit Cloitre, Feb 01 2003
With offset 0, this is 4n*2^(n-1), the binomial transform of 4n. - Paul Barry, May 20 2003
a(1)=0, a(n) = 2*a(n-1) + 2^n for n>1. - Philippe Deléham, Apr 20 2009
a(n) = A000337(n) - 1. - Omar E. Pol, Feb 22 2010
From R. J. Mathar, Mar 01 2010: (Start)
a(n)= 4*a(n-1) - 4*a(n-2).
G.f.: 4*x^2/(2*x-1)^2. (End)
From Amiram Eldar, Jan 12 2021: (Start)
Sum_{n>=2} 1/a(n) = log(2)/2.
Sum_{n>=2} (-1)^n/a(n) = log(3/2)/2. (End)
Comments