A057708
Numbers m such that 2^m reversed is prime.
Original entry on oeis.org
1, 4, 5, 7, 10, 17, 24, 37, 45, 55, 70, 77, 107, 137, 150, 271, 364, 1157, 1656, 2004, 2126, 3033, 3489, 3645, 4336, 6597, 7279, 12690, 13840, 20108, 21693, 28888, 84155, 102930
Offset: 1
4 is a term because 2^4 reversed is 61 and prime.
-
with(numtheory): myarray := []: for n from 1 to 4000 do it1 := convert(2^n, base, 10): it2 := sum(10^(nops(it1)-i)*it1[i], i=1..nops(it1)): if isprime(it2) then printf(`%d,`,n) fi: od:
-
Do[ If[ PrimeQ[ FromDigits[ Reverse[ IntegerDigits[2^n]] ]], Print[ n]], {n, 20000}] (* Robert G. Wilson v, Jan 29 2005 *)
Select[Range[4400],PrimeQ[IntegerReverse[2^#]]&] (* Requires Mathematica version 10 or later *) (* The program generates the first 25 terms of the sequence; to generate more, increase the Range constant, but the program will take longer to run. *) (* Harvey P. Dale, Aug 05 2020 *)
-
isok(m) = isprime(fromdigits(Vecrev(digits(2^m)))) \\ Mohammed Yaseen, Jul 20 2022
-
from sympy import isprime
k, m, A057708_list = 1, 2, []
while k <= 10**3:
if isprime(int(str(m)[::-1])):
A057708_list.append(k)
k += 1
m *= 2 # Chai Wah Wu, Mar 09 2021
More terms from Chris Nash (chris_nash(AT)prodigy.net), Oct 25 2000
A058993
Numbers m such that 5^m reversed is a prime.
Original entry on oeis.org
1, 3, 26, 36, 43, 66, 76, 149, 511, 885, 3767, 18157, 20516, 26316
Offset: 1
-
Do[ If[ PrimeQ[ ToExpression[ StringReverse[ ToString[5^n] ] ] ], Print[n] ], {n, 1, 3000} ]
-
isok(m) = isprime(fromdigits(Vecrev(digits(5^m)))) \\ Mohammed Yaseen, Jul 20 2022
-
from sympy import isprime
k, m, A058993_list = 1, 5, []
while k <= 10**3:
if isprime(int(str(m)[::-1])):
A058993_list.append(k)
k += 1
m *= 5 # Chai Wah Wu, Mar 09 2021
A058994
Numbers m such that 7^m reversed is prime.
Original entry on oeis.org
1, 12, 24, 225, 392, 819, 1201, 1645, 1775, 37578
Offset: 1
-
Do[ If[ PrimeQ[ ToExpression[ StringReverse[ ToString[7^n] ] ] ], Print[n] ], {n, 1, 2500} ]
-
isok(m) = isprime(fromdigits(Vecrev(digits(7^m)))) \\ Mohammed Yaseen, Jul 20 2022
-
from sympy import isprime
k, m, A058994_list = 1, 7, []
while k <= 10**3:
if isprime(int(str(m)[::-1])):
A058994_list.append(k)
k += 1
m *= 7 # Chai Wah Wu, Mar 09 2021
A350441
Numbers m such that 4^m reversed is prime.
Original entry on oeis.org
2, 5, 12, 35, 75, 182, 828, 1002, 1063, 2168, 6345, 6920, 10054, 14444, 51465
Offset: 1
-
Select[Range[2200], PrimeQ[IntegerReverse[4^#]] &] (* Amiram Eldar, Dec 31 2021 *)
-
isok(m) = isprime(fromdigits(Vecrev(digits(4^m))))
-
from sympy import isprime
m = 4
for n in range (1, 2000):
if isprime(int(str(m)[::-1])):
print(n)
m *= 4
A350442
Numbers m such that 8^m reversed is prime.
Original entry on oeis.org
8, 15, 50, 552, 668, 1011, 1163, 1215, 2199, 4230, 7231, 34310
Offset: 1
-
Select[Range[2200], PrimeQ[IntegerReverse[8^#]] &] (* Amiram Eldar, Dec 31 2021 *)
-
isok(m) = isprime(fromdigits(Vecrev(digits(8^m))))
-
from sympy import isprime
m = 8
for n in range (1, 2000):
if isprime(int(str(m)[::-1])):
print(n)
m *= 8
Showing 1-5 of 5 results.
Comments