A059106 Number of solutions to Nickerson variant of Langford (or Langford-Skolem) problem.
1, 0, 0, 3, 5, 0, 0, 252, 1328, 0, 0, 227968, 1520280, 0, 0, 700078384, 6124491248, 0, 0, 5717789399488, 61782464083584, 0, 0, 102388058845620672, 1317281759888482688, 0, 0, 3532373626038214732032, 52717585747603598276736, 0, 0
Offset: 1
Examples
For n=4 the a(4)=3 solutions, up to reversal of the order, are: 1 1 3 4 2 3 2 4 1 1 4 2 3 2 4 3 2 3 2 4 3 1 1 4 From _Gheorghe Coserea_, Aug 26 2017: (Start) For n=5 the a(5)=5 solutions, up to reversal of the order, are: 1 1 3 4 5 3 2 4 2 5 1 1 5 2 4 2 3 5 4 3 2 3 2 5 3 4 1 1 5 4 2 4 2 3 5 4 3 1 1 5 3 5 2 3 2 4 5 1 1 4 (End)
Links
- Ali Assarpour, Amotz Bar-Noy, Ou Liuo, Counting the Number of Langford Skolem Pairings, arXiv:1507.00315 [cs.DM], 2015.
- Gheorghe Coserea, Solutions for n=8.
- Gheorghe Coserea, Solutions for n=9.
- J. E. Miller, Langford's Problem
- R. S. Nickerson and D. C. B. Marsh, E1845: A variant of Langford's Problem, American Math. Monthly, 1967, 74, 591-595.
- Zan Pan, Conjectures on the number of Langford sequences, (2021).
Extensions
a(20)-a(23) from Mike Godfrey (m.godfrey(AT)umist.ac.uk), Mar 14 2002
Extended using results from the Assarpour et al. (2015) paper by N. J. A. Sloane, Feb 22 2016 at the suggestion of William Rex Marshall
a(28)-a(31) from Assarpour et al. (2015), added by Max Alekseyev, Sep 24 2023
Comments