cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059193 Engel expansion of 1/e = 0.367879... .

Original entry on oeis.org

3, 10, 28, 54, 88, 130, 180, 238, 304, 378, 460, 550, 648, 754, 868, 990, 1120, 1258, 1404, 1558, 1720, 1890, 2068, 2254, 2448, 2650, 2860, 3078, 3304, 3538, 3780, 4030, 4288, 4554, 4828, 5110, 5400, 5698, 6004, 6318, 6640, 6970, 7308, 7654, 8008, 8370, 8740
Offset: 1

Views

Author

Keywords

Comments

Cf. A006784 for definition of Engel expansion.

References

  • Friedrich Engel, Entwicklung der Zahlen nach Stammbruechen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg, 1913, pp. 190-191.

Crossrefs

Programs

  • Mathematica
    EngelExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@
    NestList[{Ceiling[1/Expand[#[[1]] #[[2]] - 1]], Expand[#[[1]] #[[2]] - 1]/1} &, {Ceiling[1/(A - Floor[A])], (A - Floor[A])/1}, n - 1]];
    EngelExp[N[1/E, 7!], 100] (* Modified by G. C. Greubel, Dec 27 2016 *)
    Join[{3}, Table[2*(2*n+1)*(n-1), {n, 1, 200}]] (* Vladimir Joseph Stephan Orlovsky, Jun 26 2011 *)
    Join[{3},LinearRecurrence[{3,-3,1},{10,28,54},50]] (* Harvey P. Dale, May 10 2012 *)
  • PARI
    Vec(x*(3 + x + 7*x^2 - 3*x^3)/(1-x)^3 + O(x^50)) \\ G. C. Greubel, Dec 27 2016

Formula

a(n) = 2*(2*n+1)*(n-1) (for n>1) follows from 1/e = Sum_{n>=1} (1/(2*n)! - 1/(2*n+1)!). - Helena Verrill (verrill(AT)math.lsu.edu), Jan 19 2004
a(1)=3, a(2)=10, a(1)=28, a(2)=54, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, May 10 2012
From G. C. Greubel, Dec 27 2016: (Start)
G.f.: x*(3 + x + 7*x^2 - 3*x^3)/(1-x)^3.
E.g.f.: 2 + 3*x + 2*(2*x^2 + x - 1)*exp(x). (End)
From Amiram Eldar, May 05 2025: (Start)
Sum_{n>=1} 1/a(n) = 7/9 - log(2)/3.
Sum_{n>=1} (-1)^(n+1)/a(n) = 1/9 + Pi/12 - log(2)/6. (End)